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Background: Cathepsin C (CTSC) (dipeptidyl peptidase I, DPPI), is amember of the papain superfamily of cysteine
proteases and involves in a variety of host reactions. However, the information of CTST in Chinese giant
salamander (Andrias davidianus), an amphibian species with important evolutionary position and economic
values, remained unclear.
Results: The full-length salamander CTSC cDNA contained a 96 bp of 5′-UTR, a 1392 bp of ORF encoding 463
amino acids, and a 95 bp of 3′-UTR. The salamander CTSC possessed several sequence features similar to other
reported CTSCs such as a signal peptide, a propeptide and a mature peptide. The active site triad of Cys, His
and Asn were also found existing in salamander CTSC. Salamander CTSC mRNA was constitutively expressed in
all the examined tissues with significantly variant expression level. The highest expression of CTSC was in
intestine, followed with stomach, spleen, lung and brain. Following Aeromonas hydrophila infection for 12 h,
salamander CTSC was significantly up-regulated in several tissues including lung, spleen, brain, kidney, heart,
stomach and skin.
Conclusion: CTSC plays roles in the immune response to bacterial infection, which provided valuable information
for further studying the functions of CTSC in salamander.
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1. Introduction

Cathepsin C (CTSC), also known as dipeptidyl peptidase I (DPPI), is a
member of the papain superfamily of cysteine proteases [1], which is
synthesized as an inactive precursor (zymogen), and is activated by a
nonautocatalytic excision of an internal activation peptide within
the N-terminal pro-peptide. The activated CTSC is consisted by
“heavy” chain (231–394 amino acides) and “light chain” (395–463
amino acids) [2]. The activated CTSC may involve in a variety of host
reactions, including intracellular protein degradation, cell growth,
neuraminidase activation, and platelet factor XIII activation [3]. In
addition, CTSC was found functioning as serine proteases in immune
effector cells (mast cells, neutrophils, and lymphocytes) [4], and was
essential for the interleukin (IL)-1-dependent sterile inflammatory
response [5], indicating it may play roles in immune process.
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Current studies on CTSC were mainly carried out in mammals,
but were scarce in other animals. Penaeus monodon CTSC was
up-regulated by lipopolysaccharide (LPS) [6], and Fenneropenaeus
chinensis CTSC was up-regulated by Vibrio anguillarum and the
white spot syndrome viruses (WSSVs) [7], implying that CTSC
involves in immune defense against pathogens.

Chinese giant salamander is the largest extant urodela amphibian
species. With the success of breeding of salamander, it has become an
important economical aquatic species in central and western China.
However, reports on the disease caused by pathogens in salamander,
especially bacterial diseases, increased greatly in recent years.
The bacterial diseases have become a hindrance to the healthy
development of salamander industry [8]. Using immune strategies, e.g.
developing vaccine for specific pathogen to treat or prevent the
animal diseases has drawn great attention of researcher [9]. However,
clearly understanding the animal immune system is a key condition
for these strategies. Thus, in the present study, the salamander CTSC
gene was cloned, and its expression in tissues of normal salamanders
and Aeromonas hydrophila infected salamanders was analyzed,
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providing useful information for fully understanding the immune
function of salamander CTSC in response to bacteria.

2. Materials and methods

2.1. Animal and bacterial infection

Normal Chinese giant salamanders (average body weight of 200 g)
were purchased from a farm in Hubei province, China, and acclimated
in aerated water tanks for one week before experiments. A. hydrophila
(strain 4LNC209) was kindly provided by Professor Aihua Li (Institute
of Hydrobiology, Chinese Academy of Sciences). Salamanders were
randomly divided into two groups. One group was bacterial infected
group, in which salamanders were injected intraperitoneally with
A. hydrophila at a dose of 1.5 × 106 cfu/100 g body weight, and
another group was control group, in which animals were injected
with the same amount of PBS solution [8]. Ten tissues including liver,
spleen, intestine, muscle, brain, stomach, kidney, lung, heart and skin
from three animals in each group were sampled at 12 h post injection.

2.2. RNA extraction and reverse transcription

Total RNA of liver was isolated using Trizol reagent (Invitrogen,
USA) according to manufacturer's instruction. Then, total RNA was
reverse-transcribed using First Strand cDNA Synthesis Kit (Thermo
Scientific, USA) based on manufacture's instruction.

2.3. Gene cloning of salamander CTSC

To obtain the salamander CTSC cDNA sequence, the liver
transcriptome of salamander was searched by tBLASTn software using
human CTSC (GenBank accession No. AAQ08887) as query bait. A
sequence of 3215 bp in length was got, and this sequence was further
analyzed using Translate at the ExPasy website (http://www.expasy.
org/tools) to gain the potential open reading frame (ORF) and
untranslated regions (UTRs). Then, specific primers were designed
based on potential 5′-UTR and 3′-UTR, and polymerase chain reaction
(PCR) amplification was done using liver cDNA as template. The PCR
products were sequenced to confirm the correctness of sequences.
Primers used in this study were listed in Table 1.

2.4. Sequence analysis

The amino acid (aa) of the nucleotide sequence was deduced using
Translate at the ExPasy website (http://www.expasy.org/tools). The
multiple alignments of aa sequences were done using Clustal O
software (http://www.ebi.ac.uk/tools/msa/clustalo) and decorated
with BoxShade software (http://www.ch.embnet.org/software/BOX_
form.html). Protein sequence identity was calculated by MatGAT 2.02
software [10]. Isoelectric points and molecular weights were predicted
with the ProtParam program (http://web.expasy.org/protparam). The
signal peptide was predicted using SignalP 4.1 (http://www.cbs.dtu.
dk/services/SignalP). The protein motif was identified with PROSITE
database (http://prosite.expasy.org/scanprosite/). Phylogenetic tree
Table 1
Primers for gene clone and expression analysis.

Primer Sequence (5′-3′) Application

adCTSC-F1 CATGTGACCTTCTGGAATCCAT Gene clone
adCTSC-R1 GCATTGAAAATGTCAGAGTACATGG Gene clone
adCTSC-F2 GTGGCCGCAACTCCCATATT Gene expression
adCTSC-R2 GCCACAGGATGCTTGGTTTCG Gene expression
adActin-F CCACTGCTGCCTCCTCTT Gene expression
adActin-R GCAATGCCTGGGTACATG Gene expression
was constructed using Neighbor-Joining (N-J) method by Mega 7.0
software and the bootstrap was set as 10,000 to test the confidence
of branch topology [11]. 3-D structure of CTSC was predicted by
SWISS-MODEL workspace (https://swissmodel.expasy.org/) and
the quality of structure was evaluated with PROCHECK program
(http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/).

2.5. Expression of CTSC in tissues of normal and A. hydrophila infected
salamander

Expressions of CTSC in tissues of normal and A. hydrophila infected
salamanders were detected using real-time quantitative PCR. Total
RNA of each tissue mentioned above was extracted using Trizol
reagent (Invitrogen, USA) according to manufacturer's instruction and
then was reverse-transcribed using PrimeScript® reagent kit with
gDNA eraser (TaKaRa, Japan) according to manufacturer's protocol.
Real-time qPCR was performed using CFX96 Touch™ Real-Time PCR
Detection System (Bio-Rad, USA) with SYBR Premix Ex Taq™
(TaKaRa, Japan) according to our previous studies [12,13]. Briefly, the
cDNA fragments of CTSC and β-actin were amplified by RT-PCR.
The amplicons in same equal molar amounts were serially ten-fold
diluted and run along with the cDNA test samples on the same
96-well PCR plate as quantitative reference. The expression of CTSC
in each tissue of normal salamander was normalized to the
expression level of β-actin and expressed ad arbitrary units [12,13].
The expression change of CTSC in tissues of A. hydrophila infected
salamanders was expressed as fold change according to our
previous studies [12,13].

3. Results

3.1. Sequence analysis of salamander CTSC

The salamander CTSC cDNA was 1583 bp in length, with a 96 bp
of 5′-UTR, a 1392 bp of ORF encoding 463 amino acids, and a 95 bp of
3′-UTR (Fig. 1). The predicted molecular mass and theoretical
isoelectric point of salamander CTSC was 52.55 kDa and 5.8,
respectively. The deduced amino acid of salamander CTSC shared high
sequence identity with that of human (69.8%), mouse (69.0%), turtle
(74.0%) and zebrafish (66.2%). Sequence alignment revealed that there
existed a 23 aa of signal peptide, a 207 aa of long propeptide region
(position of 24–230 aa), and a 233 aa of mature peptide region
(position of 231–463 aa) in salamander CTSC (Fig. 2). The mature
protein was consisted of a 164 aa of heave chain (position 231–394
aa) and a 69 aa of light chain (position of 395–463 aa), among which
contained three conserved catalytic active sites (Cys258, His405 and
Asn427) (Fig. 2). In addition, three potential N-glycosylation sites were
found in salamander CTSC, with two in the proregion (at position 28
and 55) and one in the mature peptide (at position 276).

Further, phylogenetic tree analysis showed that vertebrates' CTSC
were clustered into one clade, which was separated clearly from clade
of CTSK, CTSS, CTSL, CTSH, CTSA, CTSD and CTSB. In the CTSC clade,
salamander CTSC showed close relationship with turtle CTSC, which
was in line with the results of sequence identity analysis. In each clade
of the phylogenetic tree, the position of each sequence was in
agreement with that of traditional taxonomy (Fig. 3).

3.2. Gene synteny analysis of vertebrates' CTSC loci

The gene synteny of vertebrates' CTSC loci was analyzed using
Genomicus (v85.01) software. Results showed that the CTSC loci were
highly conserved in vertebrates. The conserved genes near CTSC were
almost found in all vertebrates, such as RAB138, GRM5, and TRY. In
addition, the transcriptional directions of genes in this loci were
compatible (Fig. 4). However, the gene linked with CTSC was different
in lamprey (Fig. 4).
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Fig. 1. Nucleotide and deduced amino acid sequences of salamander CTSC. The start code and stop code was boxed. The stop code in the 3′-UCT was double underlined.
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3.3. 3-D structure of salamander CTSC

The 3-D structure of salamander CTSC was constructed by
comparative protein modeling method by SWISS-MODEL software
using human CTSC structure (PDB No. 3PDF) as template. Similar
to human CTSC structure (Fig. 5C), salamander CTSC possessed
classical structure of papain superfamily, which was consisted of
exclusion domain at N-terminal (D24-G230) (Fig. 5A) and papain-like



Fig. 2.Multiple alignments of CTSC. Themultiple alignment was produced using ClustalO, and conserved amino acids shaded using BoxShade software. The signal peptidewas underlined.
Three catalytic active sites (Cys 258, His405 and Asn427) wasmarked bywhite triangles under the sequences. The arrows indicate the cleavage sites of signal peptide, propeptide, the heavy
chain and light chain of the mature peptide.

50 Z. Wang et al. / Electronic Journal of Biotechnology 32 (2018) 47–54
structure at C-terminal (L231-L463) (Fig. 5B) [14]. Three catalytic
active sites (Cys258, His405 and Asn427) at papain-like structure
distributed on the surface of CTSC and closed to each other in the space
(Fig. 5).
3.4. Tissue distribution of salamander CTSC transcripts

The tissue expression of CTSC in normal salamanders was analyzed
using real-time qPCR. Results showed that salamander CTSC mRNA



Fig. 3. Phylogenetic tree analysis of vertebrates' cathepsin genes. The tree was constructed using amino acid multiple alignments and the neighbor-joining method within the MEGA7.0
program. Node values represented percent bootstrap confidence derived from 10,000 replicates. The evolutionary distances were computed using the JTT matrix-based method. The
accession number for each sequence was given after the molecular type and species name.
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was constitutively expressed in all the ten examined tissues with
significantly variant expression level. The highest expression of CTSC
was in intestine, followed with stomach, spleen, lung and brain. There
was a low-level expression of CTSC in liver, heart, muscle, kidney and
skin (Fig. 6).

3.5. Expression changes of salamander CTSC after A. hydrophila infection

Following A.hydrophila infection for 12 h, the ten tissues mentioned
above were selected and real-time qPCR was employed to check
the expression changes of CTSC. As shown in Fig. 7, salamander
CTSC was significantly up-regulated in lung, spleen, brain, kidney,
heart, stomach and skin (P b 0.05), but remained no change in liver,
intestine, muscle (P N 0.05).

4. Discussion

In this study, the cathepsin C gene was cloned from Chinese
giant salamander (Andrias davidianus), an amphibian species
with important evolutionary position and economic values [8].
Sequence analysis revealed that salamander CTSC possessed several
conserved sequence features, similar to other reported CTSCs [2,
15]. Salamander CTSC contained three functional domains: a signal
peptide, a propeptide and a mature peptide. The mature peptide was
consisted of heavy chain and light chain. Three conserved catalytic
active sites (Cys258, His405 and Asn427) were found in salamander
CTSC and other vertebrates' CTSCs [16]. Further, in the 3-D structure of
salamander CTSC, these three active residues were distributed on the
surface of monomer, which made it easy to bind to and hydrolyze the
substrate [17]. In addition, three potential N-glycosylation sites were
found in salamander CTSC, with conserved positions and sequences as
in other vertebrates' CTSCs, revealing that these sites might be
glycosylated serving as recognition signals for targeting the enzyme to
lysosomes [15]. Moreover, gene synteny analysis revealed that the
genes linked CTSC were highly consistent, revealing that CTSC was
highly conserved during evolution.

It was speculated that cysteine cathepsins were evolved from
a common ancestor gene by gene duplication events [18]. Our
phylogenetic tree analysis showed that salamander CTSC and
other CTSCs were clustered together into one clade, which was
separated from clades of other cysteine cathepsins, revealing that the
relationship between CTSC and other cysteine cathepsins was far.

As that in mammalian species, salamander CTSC was found to be
constitutively expressed in all the ten examined tissues, revealing that
CTSC might function in a broad of tissues. However, the expression
level of salamander CTSC in each tissue was different. Salamander
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Fig. 4. Gene synteny analysis of vertebrates' CTSC loci. The transcriptional direction of each gene was marked by arrow up the box.
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CTSC was highly expressed in intestine, stomach, spleen and lung.
Similar case was also found for that of mammalian CTSC. Human CTSC
was expressed mainly in lung, kidney [19,20], while mouse CTSC was
abundant in the liver [15]. These results implied that the expression
pattern of CTSC might be species-specific. Intestine was important
mucosal immune related organ of amphibian, with many immune
genes expressed in it [21,22]. Highly expression of salamander CTSC in
intestine suggested that CTSC might play role in the mucosal immune
response.

To gain the immune function of salamander CTSC, we further
examined the expression changes of CTSC following A. hydrophila
infection for 12 h. Salamander CTSC was significantly up-regulated in
lung, spleen, brain, kidney, heart, stomach and skin (P b 0. 05),
indicating that CTSC was exactly involved in the immune response of
bacterial infection, potentially serving as inducible acute-phase protein.
Similar results were also observed in other animals. Black tiger shrimp
CTSC was up-regulated by LPS stimulation and reached the maximum
level at 4 h post-stimulation [6]. Rozor clam (Sinonovacula constricta)
CTSC was significantly up-regulated in digestive gland, mantle, and gill
tissues [19]. Mammalian CTSC was found existing in mast cells,
neutrophils, cytotoxic T lymphocytes and natural killer (NK) cells also
confirmed its role in immune progress [4,23].

In conclusion, the gene of cathepsin C was cloned and its sequence
features were characterized in Chinese giant salamander. Salamander
CTSC was constitutively expressed in all examined tissues with
significantly variant expression level. Following A. hydrophila infection
for 12 h, salamander CTSC was up-regulated in some tissues,
indicating CTSC might play immune functions in response to bacterial
infection. These results provided valuable basis for studying the
functions of CTSC in salamander.
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Fig. 5. Comparative analysis of 3-D structure of salamander CTSC (A and B) and human CTSC. The structure of salamander CTSC was constructed by comparative protein modeling
method by SWISS-MODEL software using human CTSC structure (PDB No. 3PDF) as template. (A) Exclusion domain at N-terminal (D24-G230) of salamander CTSC; (B) papain-like
structure (L231-L463) of salamander CTSC; (B) human CTSC structure.
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