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Background: To identify differentially expressed genes (DEGs) betweenmuscle and adipose in cattle,we analyzed
the data from the RNA sequencing of three Angus×Qinchuan crossbred cattle.
Results: Searched the Gene Expression Omnibus (GEO) for a microarray dataset of Yan yellow cattle, GSE49992.
After the DEGs were identified, we used STRING and Cytoscape to construct a protein–protein interaction (PPI)
network, subsequently analyzing the major modules of key genes. In total, 340 DEGs were discovered,
including 21 hub genes, which were mainly enriched in muscle contraction, skeletal muscle contraction,
troponin complex, lipid particle, Z disc, tropomyosin binding, and actin filament binding.
Conclusions: In summary, these genes can be regarded as candidate biomarkers for the regulation of muscle and
adipose development.
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1. Introduction

The quality of meat is affected by a higher fat content [1], which
has an important impact on the biological composition and affects
the juiciness and flavor. Currently, consumers are paying more
attention to their health and demanding better tasting and
healthier meat. Fat is made up of large clusters of adipocytes and
primarily functions in animals as energy storage and as an
endocrine organ. Fat is of importance in the regulation of
metabolism and fat deposition, and it can improve animal health
and meat quality [2,3].

Adipocytes mainly gather under the subcutaneous, intermuscular,
visceral, and mesentery connective tissue, and some are scattered
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between and inside the muscle bundle; while on one hand,
intramuscular or marbling fat plays a vital role in improving flavor
and palatability of meat, on the other, subcutaneous and visceral fat
pads are considered to be of no worth [4]. When subjected to texture
profile analysis (TPA), compared with the high-fat control, the
chewability of the low-fat sample increased, while the hardness and
elasticity remained unchanged [5]. In many cases, muscle and fat
selection are product-driven. Previous research has shown that after
adjusting for intramuscular fat, Wagyu had more intense flavor and
higher tenderness and juiciness compared to Angus [6]; for example,
at the level of gene regulation, KLF3 gene [7] and SIRT1 gene [8] alter
intramuscular fat content in cattle. Muscle and adipose functionality
are affected by a comprehensive genetic regulatory network.
Biological explanations, especially for DEGs, remain a challenge with
RNA-seq. Further research is required to discover the genes and their
mechanisms which make a difference in bovine muscle and fat
function, particularly through mining hub genes (biomarkers). In this
study, integration with functional enrichment, pathway analysis, and a
protein–protein interaction (PPI) network was used to analyze DEGs
between the longissimus dorsi muscle and adipose tissues.
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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Table 1
The results of the six samples aligned to the reference genome.
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2. Materials and methods

2.1. Experimental cattle

The cattle for this experiment came from the breeding ground of
the National Beef Cattle Improvement Center (Yangling, China), with
the same feeding conditions as supported by the ethics committee of
the Institutional Animal Care and Use Committee (Northwest A&F
University, China).

Three 18-month-old Angus × Qinchuan crossbred cattle were
slaughtered, and the longissimus dorsi and subcutaneous adipose
tissues over the 12th to 13th rib over the midline of the carcass were
sampled and stored at −80°C. The experiment was conducted on the
longissimus dorsi muscle tissue and subcutaneous adipose tissue
group, with the three replicate animals for each tissue identified using
the following code: RAN-Q-M102 RAN-Q-M12, RAN-Q-M89, and RAN-
Q-F102, RAN-Q-F12, RAN-Q-F89.

2.2. RNA extraction, sequencing, and mapping

For the procedure of extraction of total RNA and sequencing, we
referred to Mei et al. [9]. Then, after using the FASTX-Toolkit [10] to
control the quality of raw reads and removing the reads containing
the adapter, reads containing over 10% poly-Ns, and reads of low
quality (>50% of bases with Phred scores <10), we mapped the
extracted sequence to the reference genome (UMD3.1) of cattle with
TopHat v2.0.9 [11] and Bowtie v2.0.6 [12] using the default parameters.

2.3. Microarray data

One dataset [GSE49992] (GPL2112 platform, Affymetrix Bovine
Genome Array) was downloaded from the Gene Expression Omnibus
(GEO) [13], where a total of nine bulls of the same breed (Yan yellow
cattle) were included, and the dataset contained three longissimus
dorsi muscle tissues samples, three subcutaneous adipose tissues
samples, and three abdominal adipose tissues samples.

2.4. Identification of DEGs

The DESeq (1.18.0) [14] was used for analyzing DEGs from the
transcriptome data of crossbred cattle. Meanwhile, the DEGs between
muscle tissue and adipose tissue samples downloaded from GEO
datasets were analyzed using GEO2R, an interactive web tool, with
| logFC| > 2 and adj. P-value < 0. 001 as the criterion of significance.
Downloaded data from GEO were divided into three groups: the
LodAba group, for the longissimus dorsi muscle and abdominal
adipose tissues; the LodSua group, for the longissimus dorsi muscle
and subcutaneous adipose tissues; and the LodAdi group, for the
longissimus dorsi muscle and adipose tissues.

2.5. GO enrichment analyses and KEGG of DEGs

We used the DAVID online database (version 6.8; http://david.
ncifcrf.gov) [15] to analyze the function, biological processes, and
KEGG of DEGs to provide comprehensive information regarding the
gene and protein functions. To analyze the DEGs, FDR <0.05 was
considered as the criterion of significance.
Sample Clean reads Total mapped (%) Uniquely mapped (%)

RAN-Q-M102 42,087,136 87.27% 67.01%
RAN-Q-M12 27,164,290 86.46% 67.07%
RAN-Q-M89 49,965,854 87.57% 66.96%
RAN-Q-F102 47,120,010 91.53% 73.74%
RAN-Q-F12 47,828,122 89.62% 72.91%
RAN-Q-F89 46,766,436 89.83% 72.75%
Total/Average 260,931,848 88.71% 70.07%
2.6. PPI network and module analyses

For theDEGs,we used the STRINGonline database [16] to predict the
PPI network, with an interaction score > 0.4. Then, we used Cytoscape
(version 3.7.1) [17] and Molecular Complex Detection (MCODE)
(version 1.5.1) [18] to cluster key modules from the PPI network by
73
the default parameters. Subsequently, the functional major module
genes were analyzed using DAVID. Meanwhile, the R visualization
package GOPlot [19] was used to obtain a visualization of the
relationships between genes and the functional categories.
3. Results

3.1. RNA-Seq data analyses

Weobtained a total of 260.9million clean reads, with approximately
88.71% of these reads aligned to the reference genome, of which 70.07%
were unique (Table 1).
3.2. Discovered DEGs in muscle tissue and adipose tissue

Through standardization of the results, the DEGs (889 in LodAba
group, 912 in LodSua group, 957 LodAdi group from Yan yellow cattle,
and 1832 in AnQin group from Angus×Qinchuan crossbred cattle)
were confirmed, along with the overlap of four groups, including 340
genes displayed in a Venn diagram (Fig. 1A).
3.3. Enrichment and KEGG analyses of DEGs

For the gene ontology (GO) term analyses of biological processes
(BP), DEGs were significantly clustered in skeletal muscle contraction
(GO:0003009), myofibril assembly (GO:0030239), gluconeogenesis
(GO:0006094), and muscle contraction (GO:0006936) (Table 2). Cell
components (CC) of DEGs were significantly clustered in the Z disc
(GO:0030018), extracellular exosome (GO:0070062), troponin
complex (GO:0005861), and blood microparticle (GO:0072562)
(Table 2). Molecular functions (MF) were clustered and enriched in
actin filament binding (GO:0051015), actin binding (GO:0003779),
calcium ion binding (GO:0005509), and FATZ binding (GO:0051373)
(Table 2). KEGG pathway analyses showed that DEGs were greatly
enriched in adrenergic signaling in cardiomyocytes (bta04261),
pertussis (bta05133), cardiac muscle contraction (bta04260), and
carbon metabolism (bta01200) (Table 2).
3.4. PPI network and module analyses

The PPI network of DEGs was produced using STRING (Fig. 1B), and
core modules were generated using Cytoscape (Fig. 1C–E). Functional
enrichment analyses of these modules' genes were mainly enriched in
muscle contraction (GO:0006936), skeletal muscle contraction
(GO:0003009), troponin complex (GO:0005861), lipid particle
(GO:0005811), Z disc (GO:0030018), tropomyosin binding
(GO:0005523), and actinfilament binding (GO:0051015) (Table 3, Fig. 2).
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Fig. 1. Venn diagram of the protein–protein interaction (PPI) network and themost significantmodule of differentially expressed genes (DEGs). (A) The DEGswere selectedwith a fold change
>2 and adj. P-value< 0.001 among the four groups: the LodAba group, for the longissimus dorsi muscle and abdominal adipose tissues; the LodSua group, for the longissimus dorsimuscle and
subcutaneous adipose tissues; the LodAdi group, for the longissimus dorsimuscle and adipose tissues; and the AnQin group, for the Angus×Qinchuan crossbred cattle longissimus dorsimuscle
and subcutaneous adipose tissues. (B) The PPI network of DEGs was constructed by STRING. (C-E) Molecular Complex Detection (MCODE) modules from DEG screening.
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Table 2
Gene ontology (GO) terms and KEGG pathway analyses of DEGs.

Category Term Description Count in gene set FDR

Biological processes (BP) GO:0003009 Skeletal muscle contraction 7 0.00119
GO:0030239 Myofibril assembly 6 0.00134
GO:0006094 Gluconeogenesis 7 0.00487
GO:0006936 Muscle contraction 8 0.00633

Cell components (CC) GO:0030018 Z disc 19 5.22E-12
GO:0070062 Extracellular exosome 85 3.17E-07
GO:0005861 Troponin complex 5 0.0122
GO:0072562 Blood microparticle 10 0.0199

Molecular functions (MF) GO:0051015 Actin filament binding 12 5.10E-05
GO:0003779 Actin binding 12 0.00300
GO:0005509 Calcium ion binding 29 0.0234
GO:0051373 FATZ binding 4 0.0469

KEGG bta04261 Adrenergic signaling in cardiomyocytes 16 3.63E-04
bta05133 Pertussis 11 0.00863
bta04260 Cardiac muscle contraction 11 0.0122
bta01200 Carbon metabolism 12 0.0347
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4. Discussion

In this study, we demonstrated that many genes have an important
influence on muscle and adipose functionality. Genes of actinin alpha 2
(ACTN2) and actinin alpha 3 (ACTN3) constitute the Z-line in
mammalian skeletal muscle fibers and can be altered by endoplasmic
reticulum (ER) stress, which may modulate muscle performance [20].
Myosin-binding protein C, slow type (MYBPC1), has been used to
increase beef productivity [21]. Myosin light chain 1 (MYL1); troponin
T1, slow skeletal type (TNNT1); and troponin T3, fast skeletal type
(TNNT3), affect the tenderness of meat through oxidation and act on
the proteins of different metabolic pathways [22]. Titin-cap
(telethonin) (TCAP), one of the components of the z-disk, regulates
muscle growth and development, which is exclusively expressed in
muscle tissue [23]. Tropomodulin 1 (TMOD1) and tropomodulin 4
(TMOD4) are part of the TMOD family and have an important impact
on thin-filament length regulation [24], whereas TMOD4 was required
for thin-filament length regulation [25,26]. In particular, TMOD1 was
found to be a novel regulatory factor for skeletal muscle physiology
[27]. Troponin C1, slow skeletal and cardiac type (TNNC1), is proposed
to be related with tenderness [28]. Troponin C2, fast skeletal type
(TNNC2), was found in the regions associated with longissimus muscle
area (LMA), which implies that it can strongly be related with fat
deposition [29]. Troponin I2, fast skeletal type (TNNI2), and
tropomyosin 2 (beta) (TPM2) regulate muscle processes of contraction
and skeletal muscle structure [30]. Furthermore, myozenin 2 (MYOZ2)
can regulate the differentiation of myoblasts [31], by Myocyte
enhancer factor 2A (MEF2A) which was an important transcription
factor. With fat tissue as an active endocrine organ, the endocrine
system and tissue growth regulation of the body's processes have
become research hot spots [32]. The genes of cell-death-inducing
DFFA-like effector a (CIDEA) and cell-death-inducing DFFA-like
effector c (CIDEC) have been considered as important regulators of
lipid homeostasis [33]. Diacylglycerol O-acyltransferase 2 (DGAT2) can
Table 3
GO term enrichment analysis of significant module genes.

Category Term Description Genes

BP GO:0006936 Muscle contraction MYBPC
GO:0003009 Skeletal muscle contraction TNNT3,

CC GO:0005861 Troponin complex TNNT3,
GO:0005811 Lipid particle PLIN2, D
GO:0030018 Z disc DES, TC

MF GO:0005523 Tropomyosin binding TNNT3,
GO:0051015 Actin filament binding TNNC2,
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reduce diet-induced hepatic steatosis (HS) with a low level [34].
Hormone-sensitive lipase (LIPE) is an intracellular neutral lipase [35]
which relates to oleic acid and total monounsaturated fatty acids
metabolism. Perilipin 2 (PLIN2) are associated with maintenance of
adipose cells and their components. Li et al. [36] revealed the
mechanism through which PLIN2 regulates lipid droplets during the
early formation and accumulation of intracellular lipid content [37].

In conclusion, this study showed that the following results: (1) a
total of 340 DEGs, which included 21 hub genes, were identified, and
the hub genes can be regarded as candidate biomarkers for muscle
and adipose functionality; and (2) these hub genes revealed their
functional roles in lipid metabolism which may be useful for
modifying sensory attributes which are associated with fat in the meat
such as the flavor and texture. Due to the lack of other studies in this
area, the mechanisms responsible for these effects remain unknown
and require further research. These results should help to better
understand the genetic and physiological mechanisms that regulate
muscle tissue and subcutaneous fat expression and might be useful for
cattle breeding.
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Fig. 2. Distribution of genes from the GO analyses of DEGs in major modules.
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