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Background: Cecropin P1, acting as an antimicrobial, has a broad-spectrum antibacterial activity with
some antiviral and antifungal properties. It is a promising natural alternative to antibiotics which is orig-
inally isolated from the pig intestinal parasitic nematode Ascaris suum. Many studies have shown that
Cecropin P1 is helpful for the prevention or treatment of clinical diseases. Therefore, it is very necessary
to establish a safe, nontoxic, and efficient expression method of Cecropin P1.
Results: The results indicated that the recombinant protein was about 5.5 kDa showed by Tricine–SDS–
PAGE and Western blot. And Cecropin P1 was efficiently secreted and expressed after 12 h of induction,
with an increasing yield over the course of the induction. Its maximum concentration was 7.83 mg/L after
concentration and purification. In addition, in vitro experiments demonstrated that Cecropin P1 not only
exerted a strong inhibitory effect on Escherichia coli, Salmonella sp., Shigella sp., and Pasteurella sp., but
also displayed an antiviral activity against PRRSV NADC30-Like strain.
Conclusions: Collectively, the strategy of expressing Cecropin P1 in Saccharomyces cerevisiae is harmless,
efficient, and safe for cells. In addition, the expressed Cecropin P1 has antiviral and antibacterial proper-
ties concurrently.
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� 2020 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. This is an
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1. Introduction

Overreliance on antibiotics to treat different diseases has led to
the development of general drug resistance in clinical setups.
Antimicrobial peptides (AMPs) have a unique rupture mechanism,
which could be considered an ideal antibiotic substitute for the
treatment of clinically resistant bacteria strains [1]. Moreover,
AMPs play an important role in host innate immunity, suggesting
that they may be developed as novel antivirals [2,3,4] The antibac-
terial Cecropin P1, a positively charged a-helical peptide [5], is an
AMP originally isolated from the pig intestinal parasitic nematode
Ascaris suum. It is composed of 31 amino acid residues, with a
molecular weight of 3339 Da [6], and has a strong alkaline
N-terminal and highly hydrophobic C-terminus [7]. The secondary
structure, helix–curl–helix, can inhibit and kill most gram-negative
bacteria and some gram-positive bacteria [8,9], which makes it
suitable for clinical treatment, transgenic research, and as a feed
additive [10].

Recombinant expression of genes is the most economical and
effective means of obtaining AMPs in vitro, including prokaryotic
expression systems represented by Escherichia coli [11] and
eukaryotic expression systems, such as yeast [12,13,14,15]. How-
ever, as prokaryotic expression systems do not result in posttrans-
lational modifications and folding, thus a natural secondary
structure is not formed that would ensure antibacterial activity.
Therefore, the Saccharomyces cerevisiae expression system has
become one of the most widely used foreign protein expression
systems and a major methodology in the biotechnology, food,
and pharmaceutical industries [16,17] S. cerevisiae is a probiotic
with galactose as an inducer, which has the characteristics
of safety, fast reproduction, short growth cycle (generally, one
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generation per 1.5~2 h), vigorous metabolism, and abundant nutri-
tion. In addition, its ownmetabolites, such as amino acids, enhance
growth performance and immunity of livestock and poultry
[18,19]. Because of this, S. cerevisiae has been metabolically engi-
neered to produce target proteins and study the biochemical and
biological functions of these proteins [20]. Currently, there are
some reports on the expression of AMPs in S. cerevisiae [21,22]
but no reports on the expression of Cecropin P1 in S. cerevisiae.
So it is very necessary to establish a safe, nontoxic, and efficient
expression method of Cecropin P1.

NADC30-Like is a new mutant strain of porcine reproductive
and respiratory syndrome virus (PRRSV). Studies have shown that
NADC30-like strains have become the main causative agents of
PRRS in China and current commercial PRRSV vaccines cannot pro-
vide complete protection to the infection [23,24]. So there is an
urgent need for a drug to treat or prevent it. In 2018, one
NADC30-like PRRSV strain caused about 60% of sows to miscarry
in a pig farm in Sichuan, bringing huge losses to the pig industry.
Then, this strain from Sichuan province was successfully isolated
on Marc-145. Since Cecropin P1 has antiviral effect, it was used
to treat NADC30-like PRRSV strain to fill the gap in prevention
and treatment. E. coli, Salmonella sp., Shigella sp., and Pasteurella
sp. are common bacterial diseases that can infect a variety of ani-
mals. The abuse of antibiotics leads to worse and worse effective
treatment of these diseases. Cecropin P1 is a natural drug that
has inhibitory effect on most gram-negative bacteria. Therefore,
studying the expression and antibacterial effect of Cecropin P1
can provide new ideas for clinical bacterial diseases. This study
aimed to effectively express the antibacterial Cecropin P1 mature
peptide gene in S. cerevisiae. While investigating the antibacterial
effect of Cecropin P1, we also preliminarily tested whether it has
antiviral activity against NADC30-Like PRRSV strain. It laid the
foundation for the safe production of Cecropin P1 and the diversity
of Cecropin P1 activities and also provided a theoretical basis for
the development of new antibacterial and antiviral drugs.
2. Materials and methods

2.1. Strains and chemicals

All strains (E. coli, Salmonella sp., Shigella sp., Pasteurella sp., and
PRRSV NADC30-Like) were isolated from infected animals and kept
in the Animal Quarantine Laboratory of Sichuan Agricultural
University, Sichuan, China. Restriction enzymes Xho I, Xba I, and
Not I were purchased from TaKaRa Co, Beijing, China. pYES2/CT-a
factor was purchased from Changsha Yingrun Biotechnology Co,
Changsha China. S. cerevisiae was purchased from Invitrogen Co.
Ni-NTA-Sefinose Column was purchased from Sangon Biotech Co,
Shanghai, China. All other chemicals were purchased from Solarbio
Co, Beijing China.
2.2. Codon optimization and synthesis of Cecropin P1 mature peptide
gene

S. cerevisiae was used as the expression host [25]. We used the
full-length coding sequence of the Cecropin P1 mature peptide
gene as a reference from GenBank (GenBank: AB186032.1), and
used the GenScript OptimumGene Codon Optimization Analysis
online software for codon optimization, including codon adapta-
tion index, frequency of optimal codons, and genomic GC content.
The optimized Cecropin P1 gene was synthesized by Suzhou Jin-
weizhi Biotechnology Co., Ltd, Suzhou, China. A Xho I cleavage site,
an a-signal peptide, and Kex2 cleavage site were added to the 50

end of the sequence, and an Xba I cleavage site was added to the
30 end (Fig. 1). The plasmid was named pUC57-CP1.
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2.3. Construction of pYES2/CT-a factor-CP1 eukaryotic expression
vector

pUC57-CP1 and the expression vector pYES2/CT-a factor were
digested by Xho I and Xba I, respectively, at 37�C for 2 h. The prod-
ucts were predyed with 10� loading buffer then added into 1%
agarose gel, and identified by electrophoresis for 15 min, 120 V.
The molar ratio of vector to fragment for ligation overnight by T4
ligase was 1:3. Recombinant plasmid was transformed into E. coli
DH5a, and positive clones were confirmed by polymerase chain
reaction (PCR). Positive clones were then sent to Huada Technology
Co., Ltd, Wuhan, China for nucleotide sequencing and plasmid
extraction for identification by restriction enzyme digestion.
2.4. Transformation of pYES2/CT-a factor-CP1

pYES2/CT-a factor-CP1 and pYES2/CT-a factor were trans-
formed into S. cerevisiae INVSc1 competent cells and positive
clones were screened using synthetic complete uracil-deficient
(SC-Ura) selection medium. DNA templates were prepared by the
boil-freeze-cooking method, with positive clones being sent to
Huada Technology Co., Ltd. for nucleotide sequencing.
2.5. Induced expression of recombinant Cecropin P1

Positive clones of pYES2/CT-a factor-CP1 and pYES2/CT-a factor
were inoculated into 15 mL SC-Ura selection medium (containing
2% glucose), and incubated in a 30�C water bath with shaking for
24 h. Resulting cells were collected by centrifugation and cultured
for 2 h in carbon-free SC-Ura selection medium. The cells collected
by centrifugation were then transferred to 50 mL yeast extract
peptone dextrose (YPD) induction medium for an initial OD600nm

value of 0.4 [26,27]. After induction with 2% galactose [28] for 0,
12, 24, 36, and 72 h, respectively, the induction cultures were col-
lected. The supernatant was centrifuged at 12,000� g for 20 min at
4�C, filtered through a sterile 0.22 lm millipore membrane filter,
and stored at �80�C.
2.6. Purification of recombinant protein and Western blot analysis

The recombinant protein was concentrated with Amicon-Ultra-
15 (Millipore). According to the protocol of Ni-NTA-Sefinose Col-
umn, the recombinant protein was purified and then transferred
to nitrocellulose (NC) membrane after Tricine–SDS–PAGE elec-
trophoresis. Identification by western blot analysis used primary
antibodies (3000 times dilution) to the His-tag, and horseradish
peroxidase (HRP)-labeled goat anti-mouse antibody IgG (5000
times dilution) as the secondary antibody [29,30]. Recombinant
protein concentration was determined with NanoDrop 2000
Spectrophotometer.
2.7. Determination of antibacterial activity of recombinant Cecropin
P1

In order to investigate the antibacterial activity of Cecropin P1
in vitro, the minimum inhibitory concentrations (MIC) of Cecropin
P1 against E. coli, Salmonella sp., Shigella sp., and Pasteurella sp.
were determined by microdilution test according to Clinical and
Laboratory Standards Institute [31]. In addition, four antibiotics,
gentamicin, kanamycin, streptomycin, and tetracycline were
selected for the same experiment as listed in Table S1. The results
of antibiotic experiments were compared with Cecropin P1 to fur-
ther verify its antibacterial activity in vitro.



Fig. 1. Construction of recombinant plasmid pYES2/CT-a factor-CP1.
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2.8. Determination of 50% tissue culture infective dose (TCID50)

Marc-145 cells with a concentration about 1.5 � 105/mL were
incubated in 96-well cell culture plate and cultured with DMEM
containing 5% fetal bovine serum (FBS). Sixteen wells were selected
as the negative control group, and at the same time, PRRSV
NADC30-Like dilution gradients (from 10�1 to 10�8) were set as
the experimental groups, with 20 repeats for each dilution gradi-
ents. When the cells grew to about 80% of the wells, experimental
groups were inoculated with virus and cultured at 37�C in 5% CO2.
After 5 d of incubation, TCID50 was calculated by Reed�Muench
method [32,33] and recorded. Then PRRSV NADC30-Like virus
was diluted to the concentration of TCID50 and stored at �80�C
for reserve.

2.9. Preliminary study on Cecropin P1 cytotoxicity.

Marc-145 cells were seeded with DMEM containing 5% FBS on a
96-well cell culture plate and incubated at 37�C. When the cells
covered 80~90% of the wells, the culture medium was discarded
and the wells were washed 3 times with sterile physiological saline
solution. Four different Cecropin P1 concentrations were added to
cells, each concentration was repeated 3 times [34] (C1 = 15.6 lg/
18
mL, C2 = 3.9 lg/mL, C3 = 0.977 lg/mL, and C4 = 0.244 lg/mL). A
cell control group (DMEM containing 2% FBS) and a virus control
group (PRRSV NADC30-Like diluent equal to the concentration of
TCID50) were set at the same time. After incubation for 2 h at
37�C, fresh maintenance solution was replenished. When 80% of
the cells in the positive control produced cytopathic effect (CPE),
15 lL 50 lM MTT was added to each well and incubated 37�C
for 3~4 h [35,36]. Then, the liquid was aspirated and 200 lL pure
DMSO was added. The OD490nm value was measured with Nano-
Drop 2000 Spectrophotometer and recorded. Then, the cell survival
rate was calculated. [Cell survival rate = (average OD490nm value of
the antibacterial peptide group � average OD490nm value of the cell
control group) � 100%].

2.10. Cecropin P1 pretreatment antiviral test

In order to investigate whether Cecropin P1 has antiviral effect,
100 lL Cecropin P1 (C1~C4) was added to 70–80% confluent Marc-
145 cells for 2 h. Cells were then infected with PRRSV NADC30-Like
(equal to the concentration of TCID50), and their cytopathic
conditions were recorded every 12 h. When the positive control
cytopathy was stable, the cell survival rate was calculated
according to 2.8.



Fig. 2. Recombinant protein Tricine–SDS–PAGE detection. M: Protein Marker
(3.3 kDa–20.1 kDa). 1–5: Induced supernatant for 0, 12, 24, 36, and 72 h,
respectively.

Fig. 3. Western blot analysis of recombinant protein. M: Protein Marker (3.3 kDa–
20.1 kDa). 1: Western blot analysis of recombinant pYES2/CT/a factor-CP1 without
inducing by galactose. 2: Purified recombinant pYES2/CT/a factor – CP1 that has
been induced by galactose.

Table 2
TCID50 test results.

Dilution
multiple

CPE
wells

No CPE
wells

Accumulated
numbers

Percentage of
CPE wells

CPE
wells

No CPE
wells

10�1 20 0 74 0 100% (74/74)
10�2 20 0 54 0 100% (54/54)
10�3 20 0 34 0 100% (34/34)
10�4 12 8 14 8 64% (14/22)
10�5 2 18 2 26 7% (2/28)
10�6 0 20 0 46 0 (0/46)
10�7 0 20 0 66 0 (0/66)
10�8 0 20 0 86 0 (0/86)
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3. Results

3.1. Codon optimization, and synthetic and identification of the
Cecropin P1 mature peptide gene

The Cecropin P1 mature peptide gene was optimized using
OptimumGene Codon Optimization Analysis online software
(Fig. S1a). Codon adaptation index and frequency of optimal
codons were increased from 0.58 to 0.90 and from 40 to 70%,
respectively, while genomic GC content was decreased from
48.12 to 36.51%. After codon optimization, the Cecropin P1 gene
was synthesized and cloned as pUC57-CP1. After restriction
enzyme digestion, one band of 125 bp was obtained for Cecropin
P1 (Fig. S1b), which was consistent with the expected result, and
proved that the recombinant plasmid was successfully
constructed.

3.2. Identification and induced expression of recombinant protein

The Cecropin P1 insert in pUC57-CP1 was ligated into pYES2/
CT-a factor to construct the eukaryotic expression vector pYES2/
Table 1
Antibacterial activity test results.

Pathogenic strains MIC (lg/mL)

Cecropin P1 Gentamicin

Salmonella(Swine) 2 2
Salmonella (Cow) 4 2
Salmonella (Moschus berezovskii) 4 4
Salmonella (Moschus berezovskii) 4 2
E. coli (Swine) 2 1
E. coli (Avium) 4 2
E. coli (Cow) 4 2
E. coli (Cow) 8 2
Pasteurella (Rabbit) 8 1
Pasteurella (Goose) >8 16
Pasteurella (Cow) 4 32
Shigella (Swine) 4 256
Shigella (Swine) 2 128

19
CT-a factor-CP1, which was transformed into S. cerevisiae after
confirmation by restriction enzyme digestion. Only positive clones
were selected for inductive expression. Tricine-SDS-PAGE used to
identify recombinant proteins showed a major band at approxi-
mately 5.5 kDa after 12 h of induction, with an increasing yield
over the course of the induction (Fig. 2). This indicated the success-
ful expression of Cecropin P1.

3.3. Purification of recombinant protein and western blot analysis.

After induced expression for 0, 12, 24, 36, and 72 h, the secreted
protein was concentrated and purified. The concentration of Cecro-
pin P1 was 0.57, 1.33, 2.26, 5.79, and 7.83 mg/L at different induc-
tion time, respectively. The time point with the highest protein
expression was selected. Western blot analysis showed that
recombinant protein as a result of induction for 72 h specifically
reacts with the primary antibody, showing good reactogenicity
(Fig. 3).

3.4. Antibacterial activity of recombinant Cecropin P1

In order to assess the inhibitory effect of recombinant Cecropin
P1 on bacteria, common pathogenic strains were selected for
antibacterial activity determination. As listed in Table 1, Cecropin
P1 had antibacterial activity against all tested gram-negative bac-
teria. In addition, Cecropin P1 showed better antibacterial activity
compared to some other antibiotics, suggesting that Cecropin P1 is
promising to replace antibiotics for clinical treatment.

3.5. Determination of TCID50

With reference to the Reed�Muench method, the results
are shown in the following Table 2. The TCID50 of PRRSV
Kanamycin Streptomycin Tetracycline

8 16 256
16 16 128
8 32 128
2 16 64
4 8 2
4 8 4
4 8 8
8 512 8
32 16 4
64 32 2
128 8 32
512 128 64
256 256 8
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NADC30-Like was calculated to be 10�4.25/0.1 mL. The PRRSV
NADC30-Like virus was diluted to the concentration of TCID50 for
use in subsequent experiments.

3.6. Cecropin P1 cytotoxidcity test

The results of MTT assay showed that the survival rates of C1,
C2, C3, and C4 were 89.93 ± 0.64, 93.12 ± 1.37, 95.02 ± 0.33, and
94.74 ± 0.91%, respectively (P < 0.05). In other words, all dilution
concentrations were not sufficient to reach 50% cytotoxic concen-
Fig. 4. Cell status of infected virus for 72 h (100�). (a)~(d): C1, C2, C3, C4 were added to M

20
tration, indicating that the expressed protein Cecropin P1 was safe
for Marc-145 cells (Fig. S2).

3.7. Cecropin P1 pretreatment antiviral test

Cells were treated with Cecropin P1 for 2 h and then infected
with PRRSV NADC30-Like. The results of MTT assay showed that
the survival rates of C1, C2, C3, and C4 were 92.26 ± 1.40, 88.68 ±
2.62, 83.71 ± 0.72, and 68.84 ± 0.57% at 72 h (P < 0.05), suggesting
Cecropin P1 exerted a significant inhibitory effect on PRRSV
arc-145 cells for pretreatment, respectively. (e) Negative control. (f) Positive control.
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NADC30-Like in Marc-145 cells. Cells treated with lower concen-
tration of Cecropin P1 showed CPE, which was characterized by
aggregation, shedding, irregular shape, and strong refractive prop-
erty. In addition, the CPE became more obvious with the decrease
of Cecropin P1 concentration (Fig. 4).
4. Discussion

The development of AMPs is a key research area all over the
world and has potentially broad applications in drug research
and development [37], in the transgenic field [38], and practical
production [39,40]. Compared with antibiotics, they are generally
nontoxic, showing only hemolytic activity. They are also less sus-
ceptible to drug resistance and produce less residue and pollution
[41,42]. Many AMPs, such as Cecropin P1, kill or inhibit the growth
and reproduction of pathogenic microorganisms by interacting
with their cell membranes [43]. Currently, there are many
hypotheses to explain this phenomenon, including the barrel stave
model, the carpet model, and the toroidal pore model [44]. The
main biological function of Cecropin P1 is antibacterial activity;
however, they also have inhibitory and killing effects on fungi, par-
asites and viruses [45,46]. In addition, they can regulate immunity
[47], protect against necrotic skin infection [48], promote wound
healing [49], and induce apoptosis. Therefore, Cecropin P1 has
great potential for the prevention of unknown diseases and has
become a prominent topic of research in the area of antibiotic
alternatives.

For the large-scale production of AMPs, neither natural extrac-
tion nor synthetic ones are beneficial. Rather, genetic engineering
is a cost-effective method to address this area. In previous studies,
many AMPs were expressed in Pichia pastoris [12,13,14,15]. How-
ever, the P. pastoris expression system uses methanol as an inducer,
which needs to be removed during production as it poses a safety
hazard. By contrast, S. cerevisiae with galactose as an inducer is
safer. In this expression system, organisms are easy to culture with
fast growth rates, and the expressed proteins have natural struc-
ture for optimal biological activity. In recent years, there have been
few cases of using S. cerevisiae to express AMPs. Shen et al., [50]
took 4 d to express gene Crustin in S. cerevisiae S78. Compared with
this study, high concentration of Cecropin P1 can be obtained
within 36 h of induced expression, which is more efficient. Wu
et al., [51] successfully expressed the AMPs mytilin and myticin
in S. cerevisiae S78, but they did not study whether mytilin or myt-
icin had antibacterial activity in vitro. In this study, Cecropin P1
was verified to have a strong inhibitory ability against gram-
negative bacteria, which has certain guiding significance for clini-
cal medication. However, it had no inhibitory effect on Staphylococ-
cus aureus, contrary to previous reports [17,52]. A possible reason
for this is the concentration of Cecropin P1, which was too low
to inhibit the growth of S. aureus. Alternatively, different serotypes
of S. aureus with different virulence could have different sensitivi-
ties to Cecropin P1. In addition, deletion of some genes in S. aureus
has been shown to reduce antibacterial resistance to peptides
[47,53].

In addition to studying the antibacterial activity of Cecropin P1,
we have further explored its antiviral activity. Some studies have
shown that Cecropin P1 has antiviral activity against PRRSV
[4,54]. PRRSV is very susceptible to mutation, and currently, there
is no vaccine on the market that can completely prevent it. So we
further explore whether Cecropin P1 has a certain therapeutic and
preventive effect on PRRSV mutant strains. Such treatments are
more widely used and less restrictive than vaccines, which can fill
the gap in preventing PRRSV. Finally, it has been verified Cecropin
P1 was preliminarily verified to have the activity of preventing
cells from infecting the PRRSV virulent strain NADC30-Like
21
in vitro. And this is the first study to report that Cecropin P1 has
a preventive effect on PRRSV mutants, which may help the late-
term sows reduce abortions, early farrowings, fetal death, and
the birth of weak.

At present, no one successfully exploited S. cerevisiae for secre-
tory expression of Cecropin P1. So it is very necessary to establish
an expression method of Cecropin P1. This study provided a reli-
able and simple method for the preparation of large amounts of
Cecropin P1 by recombinant expression. Judging from the results
of this study, both the safety and efficiency of S. cerevisiae expres-
sion system, and the broad-spectrum antibacterial effect of Cecro-
pin P1 provides new ideas for disease treatment. What is more, it
also provided a new idea for the treatment of virus and laid the
foundation for the development of new drugs.
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