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Background: Coral diseases are one of the serious threats embroiling in the imbalance of the coral holo-
biont integrity through disruption of the complex symbiotic relationship between endobiotic alga, coral
animal, and a group of microorganisms. Such diseases are usually associated with many bacterial patho-
gens inflicting gross lesions in corals which show resistance against antibiotics. Therefore, this has led
scientists to draw more attention towards the curative compounds from natural resources like herbal
plants and seaweeds as substitutes for chemical antimicrobial agents. This study aimed to evaluate the
antibacterial activity of the crude extracts (n-hexane, ethyl acetate, and ethanol), alkaloids, and flavo-
noids from Sargassum fusiforme through Well Diffusion Assay against different isolated bacterial coral
pathogens such as (Vibrio owensii, Empedobacter brevis, Providencia vermicola, and Brevibacterium linens)
which cause white band disease to coral reef Porites lutea. This study was also validated by bacterial
growth kinetics using optical density, dry weight, and plate count method for the isolated coral bacterial
pathogens.
Results: The results indicated that the crude extract with n-hexane and alkaloid extract showed promi-
nent inhibiting activity against the tested bacterial pathogens compared to other extracts.
Conclusions: Here we report S. fusiforme extracts as a novel antibacterial agent against four Porites lutea
bacterial pathogens and further investigation is recommended against other coral pathogens. Overall, S.
fusiforme extracts might be able to improve the health status of commercially important coral species.
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1. Introduction

Coral reefs are one of the most important economic marine
ecosystems [1] old back to 500 million years ago [2]. They consti-
tute significant biological substrates that supply shelter and food
for reef-associated microorganisms [3]. Anthropogenic disorders
in physical and chemical atmospheric dynamics, sedimentation
[4], overfishing, and decrease calcification due to ocean acidifica-
tion, climate changes [5], and most importantly, infectious micro-
bial diseases [6] are much known for triggering their decline and
death. In this study, we investigate the ability of S. fusiforme to
inhibit different pathogenic bacteria that cause infectious diseases
to corals which are considered one of the elementary reasons for
the current global degradation of coral reef ecosystems [7]. The
diseases caused by microbes can be isolated and distinguished in
many cases as Vibrio species which are widely distributed in the
marine environment and frequently associated with the bivalves,
shrimp, fish, [8] corals, and shellfish species [9,10]. As mentioned
in the previous studies, Vibrio coralliilyticus was detected for lysis
and bleaching of Pocillopora damicornis [11], Serratia marcescens
for white pox disease [12], Aurantimonas coralicida for white plague
Type II [13], Vibrio shiloi for bleaching Oculina patagonia [14], Vibrio
harveyi [15] and Vibrio alginolyticus [16] for White Syndrome in
tropical stony corals in the Caribbean and Indo-Pacific. These bac-
terial diseases detected are known to be pathogenic to corals [17].

Diseases caused by such pathogenic bacteria are the major
problem in aquacultures. However, various vaccines, chemothera-
peutics, probiotics, and immune stimulants have been used to treat
bacterial infections, but mutants and drug-resistant microorgan-
isms have become a great problem [18]. Therefore, worldwide
detection and recognition of the efficiency of natural phytophar-
maceutical compounds from natural sources like seaweeds seem
to be the model of therapeutic medication [19].

Seaweeds have been long known for their high potential pro-
duction of natural bioactive secondary metabolites such as alka-
loids, flavonoids, tannins [20], phenolics, proteins, fatty acids,
terpenes, etc., [21,22] which demonstrated considerable antibacte-
rial, anthelmintic, antiviral, antifungal [23], anti-inflammatory,
antioxidant and antibiotics activities [24]. Among marine sea-
weeds, brown algae have been shown to have a higher content of
marine phenolic compounds [25] as well as flavonoids and alka-
loids in which marine algal alkaloids are relatively rare, when com-
pared to terrestrial plant alkaloids and mainly belong to the indole
and phenylethylamine groups [26]. The same authors also added
that the biological activities of marine seaweed alkaloids were
not wholly detected. On the other hand, flavonoids are the most
significant natural phenol due to their broad spectrum of chemical
and biological activities, including antioxidant and free radical
scavenging properties [27].

One of the most important and vital seaweed is S. fusiforme or
Hizikia fusiformis which is the most common brown macro-alga
with high economic value and market demand [28]. It has been
grown in China, Japan, and Korea and consumed for thousands of
years as food [29] and is common in prolonging expected life
[30]. The biological activities of crude extracts from S. fusiforme
in many studies were examined, and the results reported that
S. fusiforme possessed significant-high antimicrobial [31],
anti-allergic [32], antioxidant [33], anti-diabetic [34]
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anti-inflammatory [32,34] and HIV-1 inhibitor activities [35]. To
our knowledge, there is no report on the evaluation of crude
extracts, alkaloids, and flavonoids from S. fusiforme as antibacterial
agents against coral pathogens. Therefore, this study aimed to
extract the crude (n-hexane, ethyl acetate, and ethanol), total alka-
loids, and total flavonoids from S. fusiforme and determine their
antibacterial activity against Porites lutea bacterial pathogens.
The results obtained in this study will help understand the signif-
icant bioactivity of the extracted crudes, alkaloids, and flavonoids
as natural antimicrobial agents against coral aquarium pathogens.

2. Materials and methods

This experiment was conducted in the marine laboratory at
Third Institute of Oceanography, Ministry of Natural Resources
(China) to investigate the effect of S. fusiforme crude extracts (n-
hexane, ethyl acetate, and ethanol), alkaloid and flavonoid extract
as antimicrobial agents against some coral bacterial pathogens iso-
lated from diseased coral Porites lutea.

2.1. Sample collection

2.1.1. Materials
Five kg of well-identified S. fusiforme sample was collected in

the summer of 2020 from Wenzhou Dongtou Xinrui mariculture
professional cooperation, placed in ice bags, and transported to
the laboratory.

Four different diseased coral colonies from Porites lutea were
collected from an aquarium in the laboratory of coral conservation,
Third Institute of Oceanography, Ministry of Natural Resources
(Fig. 1). They were originally collected from Luhuitou, Sanya bay
about three meters deep. The coral colonies were scratched using
a suitable tool, the samples were collected, and placed in pre-
labeled sterilized plastic bags, and transported to the laboratory
where the experiment was carried out.

2.1.2. Strains, media, and chemicals
Bacterial strains were obtained from diseased coral Porites lutea

from the coral aquarium in the coral conservation lab, Third Insti-
tute of Oceanography, Ministry of Natural Resources. Solvents and
reagents in this study (ethanol, n-hexane, ethyl acetate, acetic acid,
methanol, and ammonium hydroxide) were of analytical grade
purity. The Luria-Bertani medium was used for isolation, antimi-
crobial activity, and bacterial growth curve.

2.2. Isolation of coral bacterial pathogens

Samples collected from diseased Porites lutea colonies were sub-
jected to serial dilution method to separate different colonies for
molecular identification of involved coral pathogenic bacteria from
coral samples Porites lutea A, B, C, and D. Coral diseased pathogens
were scratched and cultured on plates containing solid LB media
for 24 h at 37�C. After the growth of different bacterial strains, a
swab from each bacterial group was cultured in LB liquid media
which in turn was used for serial dilution as mentioned by Thrond-
sen [36]. One mL of each bacterial sample was diluted by the addi-
tion of 9 mL of sterilized water (diluent). A serial dilution was
carried out by the dilution of a sample, in 10-fold dilutions. These

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. White band diseased coral colonies from Porites lutea A, B, C, and D samples. Coral pathogens (Vibrio owensii, Alcaligenes faecalis, and Bordetella trematum),
(Brevibacterium linens, and bacillus cereus), (Alcaligenes faecalis, Providencia vermicola, and Ochrobactrum pseudogrignonese), (Empedobacter brevis) were isolated from samples
A, B, C, and D, respectively.

N. Ahmed, H.F. Mohamed, C. Xu et al. Electronic Journal of Biotechnology 57 (2022) 12–23
steps were repeated for as many dilutions as needed. Both samples
Porites lutea (A & B) were subjected to six repeated dilution steps
(10�6 dilution), while with Porites lutea (C & D) samples, the
growth of the colonies was so heavy, therefore it was needed to
subject both samples to more than six dilution steps (10�7 with
C sample and 10�8 dilution with D sample). After the preparation
of different dilutions, 50 ll from each of the tubes labeled coral
bacterial pathogens 1, 2, 3, and 4 was spread on a solid LB media
and incubated for 24 h at 37�C. Morphologically different bacterial
colonies were selected on fresh media for further identification
using 16S rDNA sequencing.
Table 1
Oligonucleotide primers used to amplify the
16S rRNA from coral bacterial pathogens.

Primers Sequences

27 F AGTTTGATCMTGGCTCAG
1492 R GGTTACCTTGTTACGACTT
2.3. Identification of coral bacterial pathogens using PCR and 16S rDNA
sequencing

Genomic DNA extraction was performed according to the
instructions of ‘‘Ezup Column Bacterial Genomic DNA Extraction
Kit (Shanghai Shenggong)”; using PCR amplification bacterial 16s
rDNA. 25 ll reaction system was used in which 0.5 ll template,
2.5 ll (10 � Buffer), 1 ll dNTP, 0.2 ll Taq enzyme, 0.5 ll 27F,
0.5 ll 1492 R, and 19.8 ll DD H2O reacted under the following con-
ditions: 94�C for 4 min, 94�C for 45 s, 55�C for 45 s, 72�C for 1 min,
72�C for 10 min, and finally 4�C. Gel electrophoresis detection uses
14
1% agarose carbohydrate electrophoresis, run at 150 V, 100 mA for
20 min, and observed the electrophoresis results of PCR products.
After sequencing analysis and electrophoresis, detection showed
a single bright band of about 1500 bp, using the ‘‘SanPrep Column
DNAJ Gel Recovery Kit (Shanghai Shenggong)” to pair the strips.
After the belts were recovered and purified, they were sequenced,
and the sequencing results were uploaded to NCBI for BLAST anal-
ysis. Oligonucleotide primers used to amplify the 16S rRNA of Por-
ites lutea bacterial pathogens are shown in (Table 1).
2.4. S. fusiforme extractions

2.4.1. Crude extractions
Samples of S. fusiforme were dried in shade for 6 weeks to

remove all water content, pulverized by a grinder into powder,
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and sieved by 0.45 mesh sieve. Crude extracts with 70% ethanol, n-
hexane, and ethyl acetate were carried out according to Bolaños
et al. [37] 1000 mL from each solvent was added separately to
200 g of S. fusiforme powdered material (1:10 g/mL) with continu-
ous shaking at 40�C for 24 h. The sample was filtered, and a fresh
solvent was added again into the sample and was shaken for
another 24 h. The collected crude extracts were reduced and con-
centrated using a rotary evaporator at 45�C, lyophilized, weighed,
and introduced as gram dry plant material then 50 mg/mL re-
dissolved again in the appropriate solvent to be used as antimicro-
bial agent against different bacterial coral pathogens.

2.4.1.1. Extraction of total alkaloids. Total alkaloids were deter-
mined according to Harborne [38]. 200 g of the dry S. fusiforme
sample was weighed and 1000 mL of 10% acetic acid in ethanol
was added, sheeted, and allowed to stand for 4 h. The extract
was filtered and concentrated on a water bath until it reached
one-quarter of the original amount. Concentrated ammonium
hydroxide was added drop by drop to the extract until the precip-
itation occurred. The whole extract was filtered, and the residue
was collected. The collected residue is the alkaloid, which was
dried, weighed, and represented as gram dry plant material; then
50 mg/mL re-dissolved again in ethanol to be used as an antimicro-
bial agent against different bacterial coral pathogens.

2.4.1.2. Extraction of total flavonoids. Total flavonoids were deter-
mined according to Bohm and Koupai-Abyazan [39]. 200 g of the
dry S. fusiforme sample was weighed and extracted repeatedly with
1000 mL of 80% methanol at room temperature. The whole solu-
tion was filtered using a filter paper, number 42 (125 mm); the fil-
trate was later transferred to the oven and evaporated to dryness,
until a constant weight was obtained. The amount of flavonoids
was calculated as gram dry plant material then 50 mg/mL re-
dissolved again in 80% methanol to be used as antimicrobial agent
against different bacterial coral pathogens.

The amount of different crudes, total alkaloids, and total flavo-
noids was weighed and calculated according to the following
equation:

Y %ð Þ ¼ Weight of the obtained dry extract
Weight of dry S:fusiforme

� 100
2.5. Assay of anti-microbial activity of different extracts from S.
fusiforme against coral bacterial pathogens

The anti-microbial effect of S. fusiforme crude extract with (n-
hexane, ethyl acetate, and ethanol), total alkaloids, and total flavo-
noids was found using the Well-Diffusion method. Sterilized Luria-
Bertani medium was mixed quickly with coral bacterial pathogens
(Vibrio owensii, Empedobacter brevis, Providencia vermicola, and Bre-
vibacterium linens) and poured into the plates under aseptic condi-
tions, which was then was let to solidify. Solidified cultures media
were perforated using U 8 mm perforator to make holes. 10 lL,
20 lL, 30 lL, 40 lL, 50 lL of different extractions of S. fusiforme
were added to the holes in the agar media while tetracycline
(500 lg/mL) was used as a positive control and concerned solvents
were used as a negative control. The cultured media were then
incubated in an incubator for 24 h at 37�C. The anti-microbial
activity was determined by measuring the diameter of the inhibi-
tion zone and the mean values were calculated. The assays were
performed in duplicate with three repetitions under strict aseptic
conditions. The microbial index was also calculated using the fol-
lowing equation:

Microbial IndexðmmÞ ¼ Inhibition zone-Diameter of the well
Diameter of the well
15
2.6. Determination of minimum inhibitory concentration (MIC)

MIC is known as the lowest concentration of the antimicrobial
agent that inhibits the visible growth of microbes after incubation
overnight. From each extract (Alkaloids, n-hexane, ethyl acetate,
and ethanol) 50 mg/mL was weighted. 100 ll from each extract
was pipetted into well column 1 separately, then 100 ll from LB
media was pipetted into all the wells from columns 1 to 12. The
extract and LB media were mixed well by sucking 5–8 times up
and down. Then 100 ll from column 1 was transferred to column
2, mixed well and another 100 ll was transferred to column 3. The
previous steps were repeated until column 10 to make (25, 12.5,
6.25, 3.12, 1.56, 0.78, 0.39, 0.19, 0.09 and 0.048 mg/mL) from each
extract. Finally, 100 ll from column 10 was discarded. 5 ll of the
diluted bacterial strain was pipetted into wells except column 12
which was the blank control. These steps were repeated separately
with each extract and with different bacterial strains. The results
were manually taken using a black card after incubation at 37�C
for 12–18 h.
2.7. Microbial growth curve

The purified colonies of different bacterial coral pathogens such
as (Vibrio owensii, Empedobacter brevis, Providencia vermicola, and
Brevibacterium linens) were cultured in LB media and incubated
with shaking incubator at 37�C, 180 rpm, and overnight. The opti-
cal densities of bacterial cultures were measured at regular inter-
vals (0.5, 1, 2, 4, 6, 8, 10, 12, 14 h) by the spectrophotometer
(SpectraMax M5) at OD 600 nm.

The dry weight of bacterial strains was obtained by the filtra-
tion method in which 1 ml of the bacterial broth was placed on a
pre-weighted dry filter paper. After the dryness of the filter paper
at 40�C, the growth of bacterial strains was calculated according to
the following formula:

Dry weight =(X2-X1).

where X2 represents the final weight of filter paper (g L�1) while X1

represents the initial weight of the dry filter paper.
The viable bacterial cells were performed using the plate count

method, in which 100 lL of the bacterial broth was inoculated
using the spread plate method; the plates were incubated at
37�C for 24 h and the number of bacterial colonies was counted.
3. Results

3.1. 16S rDNA sequencing identification of tested bacterial strains
isolated from Porites lutea

All isolated bacterial pathogens cultured on LB media were then
analyzed by extraction of their DNA followed by sequencing of
their 16S rDNA. Molecular analysis showed that bacterial strains
(Vibrio owensii, Bordetella trematum, Empedobacter brevis, Providen-
cia vermicola, Brevibacterium linens, Alcaligenes faecalis, Ochrobac-
trum pseudogrignonese, and bacillus cereus) were obtained from
white band diseased Porites lutea samples A, B, C, and D from the
coral aquarium. Only four coral bacterial pathogen strains (Vibrio
owensii, Empedobacter brevis, Providencia vermicola, and Brevibac-
terium linens) obtained from coral aquarium diseased Porites lutea
samples were selected for anti-microbial activity. (Fig. 2) shows
16S rRNA alignment reference trees for selected bacterial patho-
gens Vibrio owenssi, Empedobacter brevis, Providencia vermicola,
and Brevibacterium linens.
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3.2. Yield of total alkaloids, total flavonoids, and total secondary
metabolites from different crude extracts obtained in vitro from
seaweed S. fusiforme

The yield from S. fusiforme using different solvents showed that
the highest yield was recorded with ethanol (49.9 g – 23.9%) fol-
lowed by n-hexane (3.30 g – 1.7%) and ethyl acetate (0.91 g –
0.45%). The present study was also performed to extract alkaloids
and flavonoids from the same species in which the yield was
(0.679 g – 0.33%) and (39.1 g – 19.05%) respectively. The yield of
total secondary metabolites obtained from seaweed S. fusiforme is
shown in (Fig. 3).

3.3. Anti-microbial activity of crude extracts (n-hexane, ethyl acetate,
and ethanol), total alkaloids, and total flavonoid extracts from S.
fusiforme against Porites lutea bacterial pathogens

In the present study, we evaluated the antibacterial activity of
the crude extracts (n-hexane, ethyl acetate, and ethanol), alkaloids,
and flavonoid extracts from S. fusiforme against different White
band diseased Porites lutea pathogenic bacteria namely: Vibrio
owensii, Empedobacter brevis, Providencia vermicola, and Brevibac-
Vibrio harvey
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Fig. 2. 16S rRNA alignment reference trees for (a) Vibrio owenssi, (b) Emped
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terium linens isolated from coral reef aquarium. Each bacterial spe-
cies has shown different resistance against different solvent
extracts, alkaloids, and flavonoids.

As for the solvent extracts, n-hexane exhibited a higher antibac-
terial activity against tested coral pathogenic bacteria compared to
ethanol and ethyl acetate extracts in which n-hexane extract inhib-
ited all the tested bacterial pathogens at different concentrations.
The highest inhibition was (18 mm) against Vibrio owensii then
Brevibacterium linens (17 mm), Providencia vermicola (16 mm),
Empedobacter brevis (16 mm) at 50 ll extract. On the other hand,
the crude extract with ethanol followed n-hexane extract which
was able to inhibit only Empedobacter brevis at 20 ll, 30 ll,
40 ll, 50 ll with inhibition zones 14, 15, 17, 19 mm, respectively.
As regards ethyl acetate extract, the results showed that it was able
to inhibit Vibrio owensii at 40 ll and 50 ll by 12 mm. In the present
study, it has been observed that the tested solvent extracts (n-
hexane, ethyl acetate, and ethanol) had antibacterial properties
against coral bacterial pathogens. Regarding total alkaloids and
total flavonoids, the latter was not able to inhibit any of the tested
coral bacterial pathogens. As regards alkaloid extract from S. fusi-
forme, it showed prominent inhibition against tested Porites lutea
bacterial pathogens. The highest inhibition (38 mm) against Bre-
i (MK303403.1)
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Fig. 3. The yield of total secondary metabolites obtained in vitro from seaweed S. fusiforme. The yield of metabolites extracted from S. fusiforme /200-gram dry biomass was
(49.9 g – 23.9%), (3.30 g – 1.7%), (0.91 g – 0.45%), (0.679 g – 0.33%) and (39.1 g – 19.05%) from ethanol, n-hexane, ethyl acetate, alkaloids and flavonoids, respectively.
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vibacterium linens then Vibrio owensii (30 mm) Empedobacter brevis
(28 mm) and Providencia vermicola (19 mm) at 50 ll extract. All the
tested strains were inhibited by alkaloid extract at all concentra-
17
tions except Vibrio owensii, alkaloid extract unable to inhibit it at
10 ll. The results illustrated in (Fig. 4 and Fig. 5) are dealing with
the calculation of microbial indices from LB cultures of Porites lutea
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pathogenic bacteria with S. fusiforme n-hexane and alkaloid
extracts, respectively, as both extracts reported the best results
of bacterial inhibition.

Our findings also confirmed that the crude extracts and alka-
loids themselves have antimicrobial properties compared to n-
hexane, ethyl acetate, and ethanol which were used as negative
controls.
3.4. Minimum inhibitory concentration (MIC)

The minimum inhibitory concentration of alkaloids, n-hexane,
ethyl acetate, and ethanol was reported in (Fig. 6). The sensitivity
order of MIC for alkaloids against Brevibacterium linens, Empe-
dobacter brevis, and Vibrio owensii was 0.39063 mg/mL while with
Providencia vermicola was 0.78125 mg/mL. On the other hand, the
sensitivity order of n-hexane against Vibrio owensii and Empe-
dobacter brevis was 3.125 mg/mL while with Brevibacterium linen
and Providencia vermicolawas 1.5625 and 6.25 mg/mL respectively.
The minimum inhibitory concentration of ethanol extract against
18
Empedobacter brevis was 3.125 mg/mL and ethyl acetate against
Vibrio owensii was 3.125 mg/mL. The findings of MIC for the potent
tested extracts concluded that S. fusiforme might be used to pre-
vent and control bacterial coral diseases. Pathogenic bacterial
strains included in this study were chosen for their importance
in coral diseases which lead to their death so, controlling their
growth by natural alternatives might improve the health status
of coral species.
3.5. Bacterial growth curve

Data obtained from the optical density values (OD 600 nm), the
plate count method (CFU/mL), and the dry weight method (gram)
after the isolated bacterial pathogens were cultured in LB culture
media showed that the isolated pathogenic bacteria Providencia
vermicola has a lag phase 0–1 h, log phase 1–4 h, stationary phase
4–6 h, and the decline phase started 6–10 h from the starting of the
growth while Empedobacter brevis has a lag phase 0–1 h, log phase
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1–2 h, stationary phase 2–6 h, and the decline phase started 6–10 h
from the starting of the growth.

As regards Vibrio owensii, the results showed that it has a lag
phase 0–1 h, log phase 1–6 h, stationary phase 6–10 h, and the
decline phase started 10–14 h from the starting of the growth,
while Brevibacterium linens has a lag phase 0–2 h, log phase 2–
8 h, stationary phase 8–10 h, and the decline phase started 10–
14 h from the starting of the growth as shown in (Fig. 7, Fig. 8,
Fig. 9).

4. Discussion

To our knowledge, there are no previous studies on the antibac-
terial activity of brown seaweed S. fusiforme against coral bacterial
pathogens. Therefore, the main objective of this study was to eval-
uate the impact of the crude extracts, alkaloid and flavonoid
extracts from S. fusiforme as antimicrobial agents on different iso-
lated coral bacterial pathogens. As mentioned before n-hexane
extract exhibited a higher antibacterial activity against tested Por-
ites lutea pathogenic bacteria compared to ethanol and ethyl acet-
ate extracts. The result obtained may be more or less similar to the
results reported by earlier experiments. For example, n-hexane
extracted from S. polycystum, S. oligocytum, S. cristaefolium, and S.
crassifolium showed a moderate inhibition activity against different
bacterial strains, while ethanol, ethyl acetate, and dichloromethane
extracts showed a higher activity [37]. Another previous study
regarding ethanol extract reported that 50 ll ethanol extract of S.
vulgare exhibited inhibitory activity against S. aureus and K. pneu-
monia [31]. Ethanol extract from S. glaucescensas in another study
produced higher antibacterial activity than n-hexane and metha-
nol extracts [40]. Regarding the efficiency of the solvent used for
extraction of the bioactive substances, many authors reported that
ethyl acetate extracts from Chaetomorphalinum, Enteromorpha
compressa, and Polysiphonia subtilissima were active against most
of the pathogens while ethanol and methanol extracts were active
only against Shigella flexneri [41]. However, in another report, it
was detected that ethyl acetate and methanol were the best sol-
vents for the extraction of antimicrobial compounds from marine
algae which are in contrast to our study [42]. Antibacterial activity
of brown seaweeds such as S. tenerrimum and S. polycystum
demonstrated significant bioactivity against both gram-negative
and gram-positive bacteria [43], which emphasizes the present
investigation. Other findings by Bolaños et al. [37] mentioned that
the crude extracts isolated from S. polycystum, S. oligocystum, S.
crassifolium, and S. cristaefolium inhibited Gram-negative and
Gram-positive bacteria as well as the fungus while the extraction
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from S. tenerrimum inhibited only Gram-negative and Gram-
positive bacteria [43]. The difference in results may be due to the
existence of diverse antibacterial compounds among different spe-
cies as proposed by Lustigman and Brown [44], the place and time
of sampling collection, and also the ability of the selected protocol
to extract the bioactive metabolites [42]. The results obtained by
Alghazeer et al. [45] may be in contrast or less similar to our results
in which flavonoid extract from brown seaweed Cystoseira com-
pressa and Padina pavonica exhibited stronger antibacterial activi-
ties against Staphylococcus aureus, Bacillus cereus, Bacillus pumilus,
Salmonella enterica, Enterohaemorrhagic, and Escherichia coli. Our
results might be different from the previous findings which
demonstrated greater activity of flavonoid extracts towards
Gram-positive bacteria and Gram-negative bacteria [46]. The prob-
able reason for obtaining different results is the difference in the
configuration and permeability of bacterial cell walls and probably
due to the severity or improperly applied treatments or the repul-
sion charge between the cell wall of pathogenic bacteria and sec-
ondary metabolites as previously explained by Amorim et al.
[47]. It was found that the cell walls of the Gram-positive bacteria
are made of teichoic acids and peptidoglycans, while the outer
membrane of the Gram-negative cell wall consists of lipopolysac-
charides which make the cell wall impermeable to lipophilic
solutes [48].

To the best of our knowledge, there is only one report concern-
ing the extraction of flavonoids and evaluation of their antibacte-
rial activity from macro-algae [45]. However, several studies
have reported flavonoid extract from higher plants [49,50]. The
results obtained in this study regarding alkaloid extract may be
more or less similar to the results obtained by earlier experiments.
For example, alkaloid extract from Conocarpus lancifolius showed
antibacterial activity against Bacillus subtilis, Pseudomonas aerugi-
nosa, Staphylococcus aureus, Serratia marcescens, Erwinia amylovora,
and Agrobacterium tumefaciens [51]. The results obtained by Alg-
hazeer et al. [52] indicated that alkaloid extracts from brown,
green, and red seaweeds (S. vulgare, D. membranacea, and C. bar-
bata), (U. lactuca and C. tomentosum) and (G. latifolium), respec-
tively, exhibited remarkable antibacterial activity against
Salmonella typhi, S. aureus, S. epidermidis, Bacillus spp., B. subtilis,
E. coli, kleb. spp. and P. aeruginosa in which alkaloid extract from
brown seaweeds S. vulgare and C. barbata showed the highest inhi-
bition zone. The antibacterial activity of brown, red, and green
macro-algae was well documented by Val et al. [53] as well as their
extracted alkaloids [26]. It has been observed that the tested alka-
loid extract was highly efficient against Porites lutea bacterial
pathogens compared to flavonoids and other solvents used.
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Recently, there are several studies that reported the antimicro-
bial properties of marine plants or seaweeds [54,55]. A few report
about bioactivities of seaweeds, while this study is the first to
report about the antibacterial activity of S. fusiforme against differ-
ent Porites lutea bacterial pathogens. Seaweeds are similar to ter-
restrial plants in the production of bioactive compounds called
secondary metabolites, such as alkaloids, carotenoids, terpenes,
bromophenols, acetogenins, aromatic, and amino acid compounds
[56,57]. Additionally, the polyunsaturated esters might be the
bioactive compound responsible for antimicrobial properties in
different Sargassum species [58]. As mentioned before in many
reports, flavonoids [59] and alkaloids [60] found in plants are
important antimicrobial agents against a wide range of
microorganisms.

Flavonoids are low-molecular-weight secondary metabolites
classified as a phenolic group and synthesized by plants because
of plant microbial infection which suppresses cytoplasmic mem-
brane function, synthesis of nucleic acid, and energy metabolism
of pathogenic bacteria [61]. They are powerful against a broad
range of microorganisms [62] due to their ability to constitute
complexes with cellular proteins, associated with the bacterial cell
membrane and cell wall [63]. The antimicrobial activity of flavo-
noids has been mentioned in many studies using them in clinical
trials as antibiotics alone or combined with traditional antibiotics
[64]. In contrast to our study, the results obtained in many studies
showed that total flavonoids are a promising approach in future
studies to find out a new antibiotic against different pathogens.

On the other hand, alkaloids are a large group of natural com-
pounds that originated from plants, microbes, and animals [65].
More than 18,000 different alkaloids have been detected to date
[66]. Alkaloids have been intensely investigated for their bioactiv-
ity as antibacterial, antiviral, and anticancer activity in both mod-
ern and traditional medicine [67].

As for the infected coral bacteria, it might be worthy to mention
that Vibrio harveyi [15] and Vibrio owensii [68] are coral bacterial
pathogens implicated in the appearance of white Syndrome in
stony corals. Other studies in aquaria and the wild have noticed
a connection between the emergence of the white syndrome and
the presence of Vibrio species [69,70]. Regarding Brevibacterium
which is a coral pathogen causing white plague disease and
reported to be found in healthy, diseased Diploria strigosa and dis-
eased Siderastrea siderea [71]. Bordetella trematum, which is a spe-
cies of rare Cocco bacillus Gram-negative bacteria, has been poorly
illustrated and comprehended. Related information for this species
is rare as a result of a low frequency of isolates [72]. In this study,
we have been able to isolate Bordetella trematum from the coral
reef Porites luteawhich might be the first to isolate it from the coral
aquarium.

The white band and the black band diseases are the most signif-
icant coral diseases leading to the devastation of a coral ecosystem
[73]. The inhibition of the tested bacterial growth using different
crude solvent extracts and alkaloids may be due to the elevated
biosynthetic potential of secondary metabolites, which are already
known to inhibit bacterial growth like alkaloids and flavonoids that
were determined in this study.

Half of the stony coral species on the reef are affected by the
stony coral tissue loss disease which results in an infection rate
of 60–100% and 100% subsequent mortality [74].

The causative agent for these coral diseases can be poly-
microbial infections including various pathogens [75]. This com-
plexity was described by Ushijima et al. [10], where different Vibrio
species were associated with the severe stony coral tissue loss dis-
ease [9,76]. Vibrionaceae, Alteromonadaceae, Rhodobacteraceae,
Flavobacteriaceae, Desulfovibrionaceae, and Rhizobiaceae are
infectious pathogenic families that become enriched and more
dominant in the coral micro-biome during different environmental
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stresses as water pollution, overfishing, and climate change. These
pathogenic families cause a lot of serious diseases to the coral reef
ecosystem leading to their decline and death. To overcome this
problem, it is important to find out the curative compounds from
natural resources to restrict the growth of coral pathogens. As to
our knowledge, the present study, is the first to evaluate the effect
of crude extracts, alkaloids and flavonoid extracts from seaweed S.
fusiforme as antimicrobial agents against different coral bacterial
pathogens in the in vitro assay.
5. Conclusion

Our results investigated the potential bioactivity of different
crude extracts (n-hexane, ethyl acetate, and ethanol) alkaloid and
flavonoid extracts from S. fusiforme as antimicrobial agents against
diseased Porites lutea bacterial pathogens which are associated
with many diseases in stony corals especially white band disease.
We suggest that n-hexane extract and total alkaloids provided
potent antimicrobial characteristics against tested Porites lutea
pathogenic bacteria in the in vitro assay. To the best of our knowl-
edge, this is the first report about the antibacterial activity of S.
fusiforme against different Porites lutea bacterial pathogens. Over-
all, this study strongly suggests that S. fusiforme extracts might
have potential phytopharmaceutical properties which might be
used as natural alternatives to improve the health status of com-
mercially important coral species and provide a good point for fur-
ther in-depth study to overcome the problem of coral diseases.
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