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Background: Salicornia neei is a halophyte plant that has been proposed for use in the phytoremediation
of the saline wastewater generated by land-based aquaculture. To identify the molecular mechanisms
related to ammonium response, we analyzed the transcriptome of S. neei in response to growth in saline
water containing 3 mM ammonium.
Results: The RNA sequencing generated a total of 14,680,108 paired-end reads from the control and
stressed conditions. De novo assembly using the CLC Genomic Workbench produced 86,020 transcripts
and a reference transcriptome with an N50 of 683 base pair.
A total of 45,327 genes were annotated, representing 51.2% of the contig predicted from de novo

assembly. As regards differentially expressed genes, a total of 9,140 genes were differentially expressed
in response to ammonium in saline water; of these, 7,396 could be annotated against functional data-
bases. The upregulated genes were mainly involved in cell wall biosynthesis, transmembrane transport
and antiporter activities, including biological Kyoto Encyclopedia of Genes and Genomes, pathways
linked to the biosynthesis of secondary metabolites, plant hormone signal transduction, autophagy,
and nitrogen metabolism. In addition, a set of 72 genes was directly involved in ammonium metabolism,
including glutamine synthetase 1, glutamate synthase 1, and ferredoxin-dependent glutamate synthase
chloroplastic.
synthase
um rate;
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Conclusions: Our results support the hypothesis that an ammonium detoxification system mediated by
glutamine and glutamate synthase was activated in S. neeiwhen exposed to ammonium and saline water.
The present transcriptome profiling method could be useful when investigating the response of halo-
phyte plants to saline wastewater from land-based aquaculture.
This manuscript includes an interactive 360 degree video, supplementary to the materials and meth-

ods section. To view the video correctly, it is necessary to scroll through the screen to navigate across the
laboratory where you will find 6 interactive points. For an immersive experience a head-mounted display
can be used. Please, visit this URL: http://ejbiotechnology.info/public/360view/2022/VTPGALLARDO_
1v3/index.htm.
How to cite: Díaz-Silva M, Maldonado J, Veloso P, et al. RNA-seq analysis and transcriptome assembly of
Salicornia neei reveals a powerful system for ammonium detoxification. Electron J Biotechnol 2022;58.
https://doi.org/10.1016/j.ejbt.2022.05.003
� 2022 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Salicornia neei has been proposed for the treatment of saline
wastewater produced by land-based aquaculture effluents in South
America [1]. S. neei is a herbaceous succulent hydrohalophyte that
is abundantly distributed throughout much of the western coast-
line of the South Pacific [2]. Similar to other related species from
Europe and North America, S. neei has attracted great interest
due to its potential use as a leafy green food, because it contains
significant amounts of nutrients and functional metabolites [3,4].
Its potential to germinate and be cultivated in different salinity
gradients and nitrogen concentrations has recently been evaluated
in land-based white shrimp (Litopenaeus vannamei) farming sys-
tems [5,6] and constructed wetlands (CWs) [1].

Land-based monoculture production systems use a large
amount of artificial food rich in nitrogenous compounds, which
are not fully utilized and may contaminate the culture water [7]
or the environment if they are discarded without treatment.
Although the accumulation of these compounds is variable and
depends on both the species and the water treatment system
involved [8], studies have shown that 133 kg of nitrogen (N) is
released into the environment for each ton of harvested product
[9]. The main nitrogenated compounds that are generated as waste
are ammonia (NH3

+) and ammonium (NH4
+), which generally

emerge as the final products of protein metabolism [10]. These
compounds are found in equilibrium depending on the pH, tem-
perature [11], and salinity [12]. The accumulation of ammonia
and ammonium and other derived products, namely, nitrate
(NO3

�) and nitrite (NO2
�), deteriorates water quality [13,14,15]

and can generate eutrophication processes [16,17,18,19,20] and
even encourage the development of diseases in cultivated organ-
isms [21]. Therefore, taking advantage of nitrogenated compounds
through the implementation of integrated marine aquaculture sys-
tems with halophyte plants has been proposed as a more sustain-
able alternative for the future development of land-based marine
aquaculture [8,22].

Nitrate and ammonium, the main forms of inorganic N that
plants absorb, act as nutrients and signals affecting the growth
and metabolism of the plant [23]. In general, the preference of
plants for nitrate or ammonium depends on both the genotype
and environmental variables such as soil pH and the availability
of other nutrients [24].

Ammonium is a nutrient with qualities of rapid absorption but
excessive accumulation in tissues; in plants, high concentrations
can lead to symptoms of toxicity if it is the only source of N [25].
However, the addition of ammonium and nitrate together can be
favorable for the plant, with a synergistic action [26]. In
ammonium-tolerant plants, such as of the Salicornia genus, the
NH4

+ assimilation activity is higher compared to glycophytes.
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Ammonium stimulates its assimilation via the upregulation of sev-
eral key enzymes involved in ammonium metabolism [27,28].
After direct uptake or conversion from NH3

+, NH4
+ is assimilated to

glutamine and glutamate via the activity of glutamine synthetase
(GS), glutamate synthase (GOGAT), and glutamate dehydrogenase
(GDH). The products of these pathways are required for the biosyn-
thesis of other nitrogenous compounds [29]. These enzymes are
part of two distinct pathways, the GS/GOGAT and GDH pathways.
GS assimilates ammonium by catalyzing the amination of gluta-
mate to form glutamine, while GOGAT catalyzes the reductive
transfer of an amide-amino group from glutamine to 2-
oxoglutarate, with the production of glutamate. GDH catalyzes
the reversible amination of 2-oxoglutarate and ammonium to form
glutamate [30].

In most glycophyte plants, highly saline soils disrupt metabo-
lism, mainly due to decreased N uptake, altered activities of nitrate
(NO3), and ammonium- (NH4

+) assimilating enzymes, inducing
changes in amino acid synthesis and increasing the activity of
hydrolyzing enzymes such as RNase, DNase, and protease, which
lead to macromolecule degradation [31]. However, halophytic
plants have the enzymatic potential to synthesize GS, GOGAT,
and GDH in order to assimilate ammonium under saline conditions
[32]. These enzymes have been demonstrated to be powerful reg-
ulators of gene expression, and may be involved in diverse stress
responsiveness [33]. For example, many halophytic plants accumu-
late large amounts of soluble nitrogenous compounds that are
involved in salt tolerance, such as proline and the proline analog
4-hydroxy-N-methyl proline, glycine betaine, pinitol, myoinositol,
mannitol, sorbitol, O-methylmucoinositol, and polyamines (PAs)
[32,34,35].

To identify the molecular mechanisms of ammonium response,
we conducted a transcriptomic analysis of S. neei in response to
ammonium in saline water. It was expected that S. neeiwould have
a gene response profile typical of halophyte plants when exposed
to abiotic stressors of both ammonium and salinity.

2. Materials and methods

2.1. Plant material collection

S. neei wild plants were collected from the ‘‘Pullally” salt marsh
(Papudo, Chile; latitude, 32�24’50”S; longitude, 71�23’35.01”W)
(Fig. 1) and transported to the facilities of Marine Farms Inc.
(Laguna Verde, Chile, latitude 33�6’36”S; longitude 71�40’48”O)
for propagation using cuttings. Stem cuttings were placed in an
aquaponic cultivation system until they developed roots. Then,
180 rooted cuttings of S. neei were obtained from Marine Farms
Inc. and transported to controlled growth chambers at the Pontifi-
cia Universidad Católica de Valparaíso (Valparaíso, Chile, latitude
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Fig. 1. Salicornia neei wild plants from ‘‘Pullally” salt marsh (Papudo, Chile; latitude, 32�24’50”S; longitude, 71�23’35.01”W).
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33�102100S, longitude 71�3705700W). The cuttings were acclimated
for 7 d in hydroponic culture pots using UV-filtered seawater
(600 mM NaCl) to remove suspended particles and microorgan-
isms. The cuttings were reared in a 12/12 h (day/night) photope-
riod cycle at a temperature of 20�C and constant oxygenation,
until being used in ammonium removal biokinetics or RNA-seq
experiments. No extra nitrogen source was added to the filtered
seawater during the acclimatization period, which had a basal con-
centration of 28 ± 6.5 lM L�1 of ammonium.

2.2. Michaelis–Menten ammonium removal biokinetics

A total of sixty cuttings were used to characterize the Michae-
lis–Menten ammonium removal biokinetics. They were randomly
distributed in five treatments that consisted of filtered seawater
solutions with the addition of ammonium chloride (NH4Cl) at the
following concentrations: 0, 1, 2, 3, and 4 mM. Each treatment
was set up in 500 mL flasks in which 4 cuttings with an average
weight of 21.8 ± 9.9 g were placed (Fig. S1). For each treatment,
a flask without plants was also used as a control or blank. Ammo-
nium removal was evaluated every 60 min for a period of 5 h. At
each time point, two 1.5 mL samples were taken from the treat-
ments and control, and stored in Eppendorf tubes for subsequent
analysis. The Nessler method [36] was used for the determination
of ammonium, using a HACH DR2800 spectrophotometer at
425 nm. The ammonium uptake rate was expressed in lM NH4Cl
g�1 DW h�1. After uptake, the root fresh weights were also
recorded. The regressive relationship between uptake rate and
ammonium concentration in the external solution was illustrated
with the Michaelis–Menten [37] equation, as follows:

I ¼ Imax½C�
Km þ ½C�

where I is uptake rate, Imax is the maximum uptake rate, Km is the
half-saturation constant (Michaelis–Menten constant), and C is
the ion concentration in solution. Michaelis–Menten curves were
fitted using RStudio 7.0.

2.3. RNA-seq experiment and RNA extraction

A total of 24 cuttings were transferred to six plastic culture pots
(four cuttings per pot and three biological replicates) containing
500 mL of filtered seawater with 0 or 3 mM NH4Cl. After 2.5 h,
the cuttings were harvested for analysis. Approximately 1 g of col-
lected stem tissue was extracted from each cutting, immediately
frozen in liquid nitrogen, and stored at �80�C until RNA extraction
(Fig. S2). Total RNA extraction was performed on three biological
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samples at 0 and 3 mM ammonium. RNA extractions were per-
formed following the previously described pine tree extraction
method [38] used in combination with b-mercaptoethanol [39]
and TRIzol (Life Technologies, Corp., Carlsbad, USA) according to
the manufacturer’s protocol. To homogenize the sample, it was
ground in a mortar and pestle in the presence of liquid nitrogen
and subsequently heated at 65�C for 5 min in the presence of
1 mL pine tree buffer (PTB). Then, 20 lL b-mercaptoethanol was
added to achieve greater sample purification, and the TRIzol steps
were carried out according to the manufacturer’s protocol. Each
sample was eluted in 60 lL of DEPC water and subjected to quan-
tification by fluorometry using a Nanodrop (Biotek). Then, 5 lg of
each sample was treated with RNase-free DNase I (Thermo Fischer
Science) to remove residual genomic DNA, and precipitated with
3 M NaAc pH 5.2 and 100% EtOH. Finally, integrity was evaluated
by electrophoresis in a 1% agarose gel, as described in [40].

2.4. Library construction, deep sequencing, and de novo transcriptome
assembly

Library construction and deep sequencing of S. neei following
treatment with 0 or 3 mM NH4Cl were performed at Macrogen
(Inc. Seoul, South Korea) using the Solexa HiSeq2000 platform with
the Truseq mRNA library previously constructed for paired-end
applications, according to Macrogen’s protocol. For de novo tran-
scriptome assembly, the raw data were cleaned of adaptor
sequences, while low-quality reads (Q-value �20), reads with
poly-N segments (reads containing more than 50% unknown bases)
and short reads (less than 50 base pairs (bp)) were removed. The
sequence quality algorithm contained in the CLC Genomics Work-
bench version 8.0 (https://www.clcbio.com) was used for this pur-
pose. These results were processed using the scaffolding contig
algorithm in the de novo assembly function of the CLC Genomics
Workbench with default parameters. Single pools of 3 samples of
0 mM NH4Cl and 3 samples of mM NH4Cl were mapped separately
against the assembled set of contigs using the RNA-seq tool of the
CLC Genomics Workbench with the following parameters: similar-
ity = 0.9; length fraction = 0.6; maximummismatches = 2; unspeci-
fic match limit = 10. Paired reads were counted as 2, and paired-
end distances were set as 101 bp.

2.5. Functional annotation

To identify the putative biological function, all assembled con-
tigs were searched against public protein databases using the
BLASTx algorithm of BLAST version 2.6.0+ [41]; the searched data-
bases included the NCBI non-redundant (NR) protein database

https://www.clcbio.com
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with an E-value cut-off of 10�5, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database with an E-value of 10�5,
and EggNOG (orthology predictions and functional annotation)
with an E-value of 10�10. Furthermore, to consolidate the informa-
tion, all contigs were assigned to Gene Ontology (GO) categories
using the Blast2Go version 5.2 [42] software package and an E-
value cut-off of 10�5. Finally, because the genus Salicornia is poorly
represented in the protein databases, contigs were also aligned
against the nucleotide sequences of Salicornia available from the
NCBI database using BLASTn with an E value of 10�5.

2.6. Differentially expressed genes (DEGs)

To determine the differentially expressed genes in S. neei under
the two nutritional conditions, RNA-seq analysis was performed
using the CLC Genomics Workbench program version 8.0
(https://www.clcbio.com). The relative transcript levels were
defined as the number of reads that uniquely mapped to a gene.
The expression levels were compared using a Z-Test
[43,44,45,46] with 0 mM NH4Cl as the reference. This test com-
pares counts by considering the proportions that make up the total
sum of counts in each sample, correcting the data for sample size.
For visual inspection, the original expression values were log10-
transformed and then normalized using the quantile method that
best fits the results [44]. As a significant threshold for the selection
of genes with differential expression, a false discovery rate (FDR) p-
value <0.001 and an absolute fold change (FC) of 2.0 were adopted.
Finally, GO enrichment analyses were performed separately on
genes up-regulated in the 0 and 3 mM NH4Cl treatments to inves-
tigate the differences in the ammonium response mechanism. For
details see Supplementary 360� interactive video available at
http://ejbiotechnology.info/public/360view/2022/VTPGALLARDO_
1v3/index.htm.

3. Results

3.1. Kinetics of ammonium removal

The parameters of the NH4-N uptake kinetics have not been pre-
viously determined for S. neei. The ammonium uptake rate
increased with increasing ammonium concentration in the exter-
nal solution, and tended toward saturation in the range of 3–
4 mM (Fig. 2). Using regression analysis, it was found that the
kinetic characteristics of ammonium uptake by the test plant could
be illustrated using the Michaelis–Menten equation at a signifi-
cance level of p < 0.001. The kinetic parameters for ammonium
uptake were estimated as a maximum rate (Imax) of 7.07 ± 0.27
Fig. 2. Salicornia neei ammonium uptake rate as a function of ammonium
concentration.

73
and a half-saturation constant (Km) of 0.85 ± 0.12. Ammonium
removal was significantly different from zero in all treatments
(Table S1).

3.2. Transcriptomic sequencing, de novo assembly, and data
availability

The transcriptomic analysis of pooled samples resulted in a
total of 147,935,752 clean reads; the comprehensive reads were
assembled into contigs using paired-end reads, resulting in
86,020 contigs with an average length of 586 bp (Table 1 and
Table 2). The raw sequencing data were deposited in the NCBI
Short Read Archive (SRA) database under accession code
SRR9694999, and they have been assigned the BioProject accession
number PRJNA554118.

3.3. Overview of sequences annotation and differentially expressed
genes (DEGs)

The functional annotation process of the contigs using the NR
database determined the presence of 86,020 contigs, most of which
were assigned to Spinacia oleracea and Chenopodium quinoa. Most
sequence homologies (Table 3) were found via comparisons
against the NCBI–NR database (45,327 contigs), followed by GO
(37,784 contigs) and EggNOG (20,047 contigs). Furthermore,
32,609 contigs were compared locally against the nucleotide
sequences of Salicornia sp. Thus, a total of 13,906 new sequences
from S. neei were found that did not match with those of other
databases (Fig. S3). Based on the S. neei global transcriptome
(86,020 contigs), 9,140 contigs were differentially expressed in
their response to ammonium in saline water (7,040 up-regulated
and 2,100 down-regulated), but only 7,396 could be annotated
against the NR, GO, EggNOG and KEGG databases. Moreover, 588
DEGs were unique to the ammonium treatment. This was judged
based on the abundance of transcription in the control, which
was too low.

3.4. Function annotation and classification

A total of 150,944 GO terms were assigned to 37,784 (43.9%) of
the analyzed sequences; in multiple cases, several terms were
assigned to the same sequence (mean = 4). Of the GO functional
groups, 11 were assigned to biological processes, 10 to molecular
functions, and 7 to cellular components. The top five functional
groups were organic substance metabolic process (18,160), intra-
cellular anatomical structure (18,042), cellular metabolic process
(17,526), primary metabolic process (17,076), and organelle
(15,242) (Fig. 3). GO terms retrieved for the DEGs of S. neei were
subjected to a functional enrichment analysis, obtaining 17
enriched terms belonging to three main categories (BP, MF, and
Table 1
Reads trimming and mapping stats.

Library-
0 mM-
NH4Cl

Library-
3 mM-
NH4Cl

Quality and adapter
trimming

Number of reads 71,793,586 74,986,522
Avg length (bp) 97.7 97.6
Number of reads
after trim

71,695,733 74,879,764

Reads mapping to
de novo assembled S.
neei transcriptome

Reads mapped in
pairs

51,430,428 51,493,796

Reads mapped in
broken pairs

7,007,230 9,483,298

Reads not
mapped

13,161,064 13,796,746

Total 71,598,722 74,773,840
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Table 2
Summary of RNA-seq and de novo sequence assembly for Salicornia neei.

Count Average length (bp) Total bases

Total Reads 147,935,752 96.32 14,248,757,629
Matched 120,663,553 96.32 11,622,050,087
Not matched 27,272,199 96.31 2,626,707,542
Contigs 129,008 586 75,674,621
Reads in pairs 102,737,332 153.3
Broken paired reads 16,680,278 96.26

Table 3
Summary of annotations of assembled Salicornia neei contigs.

Number of contigs
annotated

Percentage of contigs
annotated

NCBI (NR) 45,327 52.6
NCBI (NT

Salicornia)
32,609 37.9

GO 37,784 43.9
KEGG 13,604 15.8
EggNOG 20,047 23.3

GO: Gene Ontology; KEGG: Encyclopedia of Genes and Genomes.
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CC) (Fig. 4). The enrichment proportion in the S. neei test set corre-
sponds to the double or triple proportion of those found in the ref-
erence set: Xyloglucan metabolic process (0.3% in test set vs. 0.05%
in reference set), beta-glucan metabolic process (0.72% in test set
vs. 0.25% in reference set), beta-glucan biosynthetic process
(0.63% in test set vs. 0.22% in reference set), cell wall organization
biogenesis (1.25% in test set vs. 0.36% in reference set), sterol meta-
bolic process (0.35% in test set vs. 0.10% in reference set), steroid
metabolic process (0.46% in test set vs. 0.14% in reference set), glu-
cosyltransferase activity (1.0% in test set vs. 0.37% in reference set),
Fig. 3. Histogram of Gene Ontology (GO) classification of 37,784 S. neei transcripts assi
cellular component (CC).
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ion channel activity (0.7% in test set vs. 0.3% in reference set), and
extracellular region (1.3% in test set vs. 0.69% in reference set)
(Fig. 4).

Several DEGs were induced in response to ammonium treat-
ment, mostly related to the maintenance of homeostasis. Out of
the 91 DEGs related to nitrogen metabolism, 72 were up-
regulated, including the following: glutamine synthetase (GS),
22-fold; oxoglutarate dehydrogenase (2-OGD), 2.34-fold;
ferredoxin-dependent glutamate synthase chloroplastic (Fd-
GOGAT), 4.29-fold; glutamate synthase 1 (NADH) chloroplastic iso-
form X1 (GLT1), 6.74-fold and ammonium transporter (AMT1),
2.39-fold (Table S2). Phytohormone biosynthesis was also up-
regulated; here, we found genes related to ethylene biosynthesis
(S-adenosylmethionine synthetase (S-AdoMet) (20.82-fold), S-
adenosyl-L-methionine (SAM) (4.8-fold), 1-aminocyclopropane-1-
carboxylate synthase (ACC) (13.96-fold)) and abscisic acid biosyn-
thesis (zeaxanthin epoxidase (ZEP) (2-fold), violaxanthin de-
epoxidase, chloroplastic (VDE1) (2.56-fold) and xanthoxin dehy-
drogenase (ABA2) (2-fold)). We also found many genes closely
related to polyamine biosynthesis and autophagy, such as arginine
decarboxylase-1 (ADC1), 2.36-fold; s-adenosylmethionine decar-
boxylase proenzyme (SAMDC1), 2.25-fold; polyamine oxidase-1
(PAO-1), 17.56-fold; autophagy-related protein 1 (ATG1), 2-fold;
autophagy-related protein 13 (ATG13), 2.11-fold; autophagy-
related protein 9 (ATG9), 5.89-fold; autophagy-related protein 2
(ATG2), 3.91-fold; and autophagy-related protein 18, 2.57-fold.
Genes responsible for vesicle nucleation, such as vacuolar protein
sorting 34 (VPS34) (3.26-fold) and vacuolar protein sorting 15
(VPS15) (2.0-fol), were also found up-regulated. Finally, genes
responsible for the elongation and closure vacuolar protein sorting
8 (ATG8) were up-regulated 2.0-fold, and phosphatidylserine
decarboxylase proenzyme 2 (PSD2) was up-regulated 2.0-fold;
gned to three main categories: biological process (BP), molecular function MF) and



Fig. 4. Gene Ontology enrichment analysis of differentially expressed genes in S. neei transcripts upregulated in test set vs upregulated genes in reference set.

Table 4
Summary of distribution of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways in the S. neei transcriptome.

KEGG Pathway N� Contigs

Biosynthesis of secondary metabolite map01110 297
Biosynthesis of antibiotics map01130 95
Amino acid biosynthesis Map01230 71
Carbon metabolism map01200 61
Starch and sucrose metabolism map00500 55
Plant hormone signal transduction map04075 53
Phenylpropanoid biosynthesis map00940 52
Cysteine and methionine metabolism map00270 34
Arginine and proline metabolism map00330 28
Nitrogen metabolism map00910 25
Purine metabolism Map00230 21
Autophagy – other map04136 20
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both of these catalyze the formation of phosphatidylethanolamine
(PE).

DEGs were almost mapped to the metabolic pathway in KEGG;
1,206 DEGs were mapped to 167 KEGGs. Among the 167 pathways,
the largest pathway was the biosynthesis of secondary metabolites
(296 up-regulated genes), followed by ubiquitin-mediated proteol-
ysis (55 up-regulated genes) and plant hormone signal transduc-
tion (48 up-regulated genes). DEGs were mostly mapped to
autophagy (other (20 up-regulated genes) and nitrogen metabo-
lism (14 up-regulated genes)) (Table 4). Finally, to identify the pro-
teins distributed in eukaryotic orthologous groups, and in clusters
of orthologous groups and non-supervised orthologous groups, the
annotated contigs were mapped to the annotations of the corre-
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sponding orthologous groups in the EggNOG database. A total of
20,047 (23.3%) sequences were divided into 25 categories and
specific functional groups were identified (Fig. 5). In the 25 Egg-
NOG categories, the largest proportion of contigs belong to the
cluster of ‘‘function unknown” (9,012; 44.9%), followed by ‘‘O:
posttranslational modification, protein turnover, chaperones”
(2,948; 14.7%) and ‘‘T: signal transduction mechanisms” (3,031;
15.11%). Other important groups closely related to ammonium
nutrition response and stress response were ‘‘E: amino acid trans-
port and metabolism” (1,391; 6.9%), ‘‘Q: Secondary metabolites
biosynthesis, transport, and catabolism” (883; 4.4%), ‘‘M: cell
wall/membrane/envelope biogenesis” (486; 2.42), and ‘‘V: defense
mechanisms” (259; 1.2%). Only a small number of contigs were
assigned to ‘‘W: extracellular structures” (6; 0.02%) or ‘‘Y: nuclear
structure” (14; 0.006%). For details see Supplementary 360� inter-
active video available at http://ejbiotechnology.info/public/
360view/2022/VTPGALLARDO_1v3/index.htm.
4. Discussion

The use of halophyte plants to treat wastewater highly loaded
with nitrogen compounds derived from the metabolism of aquatic
organisms has been proposed to increase the sustainability of land-
based aquaculture. However, the molecular mechanisms by which
these plants can absorb and use these compounds in highly saline
environments are poorly understood [20,47]. This work used tran-
scriptome analysis of the halophyte plant S. neei to investigate the
possible pathways that are implicated in their response to ammo-
nium nutrition. We considered possible ammonium homeostasis

http://ejbiotechnology.info/public/360view/2022/VTPGALLARDO_1v3/index.htm
http://ejbiotechnology.info/public/360view/2022/VTPGALLARDO_1v3/index.htm


Fig. 5. Functional annotation of contigs identified in Salicornia neei transcriptome. EggNOG classification analysis.
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through ammonium metabolism and the encapsulation of ammo-
nium in vacuoles to avoid increasing the acidity in the apoplast.
We studied the kinetics of ammonium absorption in concentration
gradients to demonstrate the activity of HATS (high-affinity trans-
port systems) (AMT1), which are mainly related to the entry of
ammonium into the cell, and therefore the disappearance of
ammonium in the substrate.

The NH4 uptake kinetics of S. neei plants incubated at different
concentrations fitted the Michaelis–Menten model well, up to
4 mM NH4 L�1 (Fig. 2), indicating the plant’s HATS activity at the
tested concentrations. Quinta et al. [7] found a good fit for the
Michaelis–Menten model up to 2 mM NH4 L�1 in S. europeae, and
suggested that HATS (high-affinity transport systems) are respon-
sible for N uptake in that plant. In this study, S. neei displayed
higher ammonium absorption compared to S. europeae [7], demon-
strating a better capacity for use in aquaculture wastewater.

The Michaelis–Menten equations obtained with the tested
ammonium concentrations (1–4 mM NH4Cl) describe changes in
ammonium absorption according to the amount of ammonia sup-
plied. It was found that S. neei had a high affinity for the substrate
(Km = 0.85 ± 0.12 mM NH4 L�1), indicating that this plant can per-
form well in substrates with high concentrations of ammonia. In
addition, for aquaculture wastewater with concentrations equal
to or greater than 4 mM NH4 L�1 and up to 7.07 ± 0.27 mM NH4

g�1 FW h�1, it is believed that the uptake rate does not increase
because the plant blocks AMTs at higher concentrations. Concern-
ing the kinetic characteristics of N uptake in plants, it has been pro-
posed that species with higher maximum uptake rates might be
better suited to cleaning up wastewater with high nutrient concen-
trations [48].

The cell wall plays an important role in stress perception by
facilitating the activation of signaling pathways and remodeling
growth strategies in response to stresses [49]. This structure con-
76
stitutes the first line of defense against biotic and abiotic environ-
mental influences through wall reinforcement via callose
deposition [50]. In this study, an enrichment analysis of DEGs
under ammonium nutrition revealed that a set of overexpressed
genes related to secondary cell wall materials could contribute to
the maintenance of cell wall structure and the functional proper-
ties of S. neei. Some studies have reported that genes related to cell
wall maintenance are significantly enriched in treatments that
induce biotic or abiotic stress [51]. This is very interesting, as it
has been shown that the cell wall structure is reassembled through
the biosynthesis of cell wall polymers, which allows it to adapt to
stress conditions [49,52,53]. Wang et al. [53] demonstrated that
cell wall modifications were highly active in response to salt stress
in cotton. The most common adaptations of the cell wall to stress
include (i) increased levels of xyloglucan endotransglucosylase/h
ydrolase (XTH) and expansin proteins, associated with an increase
in the degree of rhamnogalacturonan I branching, which maintains
cell wall plasticity, and (ii) increased cell wall thickening through
the reinforcement of the secondary wall with hemicellulose and
lignin deposition [49,54]. It was proposed that xyloglucan regula-
tion by expansins could improve the efficiency of nutrient uptake.
Several types of expansins respond to deficiencies in different
nutrients, including nitrogen, phosphorus, potassium, and iron
[55]. In this study, we found up-regulated genes related to the
xyloglucan metabolic process, cellular–glucan metabolic process
categories, which can regulate several physiological plant
responses through cell wall remodeling in S. neei. Also, we found
up-regulated genes related to sterol metabolic processes and ster-
oid metabolic processes, which play crucial roles in various physi-
ological and biochemical processes during development and stress
resistance in plants (Fig. 4).

KEGG analysis showed that DEGs were most enriched in the
biosynthesis of secondary metabolites (Table 4). This intracellular
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physiological defense response helps plants resist environmental
stresses, indicating that they may likely play an important role in
ammonium stress response, even though the shoot only receives
NH4

+ stress signals from the root indirectly [56]. Some studies indi-
cate that the accumulation of secondary metabolites is highly
dependent on environmental factors such as light, temperature,
soil water, soil fertility, and salinity [57]. Another pathway
observed in high-ammonium conditions was plant hormone signal
transduction (Table 4); the abundance of DEGs related to this path-
way is in agreement with the increased expression of the ethylene-
responsive transcription factor and the ABA responsive element
binding factor. Plant hormones play critical roles in response to
various adverse biotic and abiotic environmental stresses (drought,
heat, soil salinity, tropospheric ozone and excess UV radiation)
[58], but have not been reported in ammonium stress. The genes
involved in transcription, consistent with the role of phytohor-
mones as triggers of signal transduction cascades, are key compo-
nents in responses to abiotic stress. We investigated the common
and specific responses of S. neei shoots to ammonium stress
through up-regulated or down-regulated DEGs, with a special
focus on the role of phytohormones, and we found abscisic acid
(ABA) and ethylene to be essential plant hormones regulating abi-
otic and biotic stresses [59,60]. According to previous studies on
some halophytes species, under high-salinity conditions, ethylene
production is increased in the leaves and roots [61]. Similarly, it
was observed that ABA and ET signaling pathways were increased
under ammonium treatment in rice and maize [23,56], suggesting
that ET and ABA biosynthesis might be increased in response to
stress. It is well known that these pathways interact among them-
selves at various nodes, such as hormone-responsive transcription
factors, to regulate plant defense responses [62,63,64]. Among the
Table 5
Genes involved in ammonium homeostasis and phytohormone biosynthesis in Salicornia n

Classification NCBI Accession Differentially expressed protein-
coding genes

Role

genes related to
nitrogen
metabolism

GHTP01016006.1 glutamine synthetase (GLN1) Plays
conde

GHTP01002667.1 ammonium transporter 3 member
1-like (AMT3.1)

Involv

GHTP01006207.1 pyrroline-5-carboxylate
synthetase (P5CS)

Plays

GHTP01009881.1 glutamate synthase 1 [NADH]
chloroplastic isoform X1 (GS)

Cataly
glutam

GHTP01037737.1 ferredoxin-dependent glutamate
synthase chloroplastic (Fd-
GOGAT)

Has a

GHTP01000190.1 high affinity nitrate transporter
2.5-like (NRT2.5)

Might

genes related to
polyamines

GHTP01019462.1 arginine decarboxylase (ADC) Impor
GHTP01012076.1 S-adenosylmethionine

decarboxylase
(SAM)

Key e

GHTP01012076.1 adenosylmethionine
decarboxylase proenzyme
(SAMDC1)

Plays

GHTP01019486.1 polyamine oxidase 1 (PAO1) Involv
cold s

genes related to
ethylene
biosynthesis

GHTP01022642.1 ethylene-responsive transcription
factor like (ERF109)

May b
by com

GHTP01023420.1 ethylene-insensitive protein 2
isoform X1 (EIN2)

Might
to pat

GHTP01045464.1 heat stress transcription factor A-3
(HsfA3)

Confe

genes related to
ABA
biosynthesis

GHTP01059070.1 ABA responsive element binding
factor

Trans
plant

GHTP01022623.1 dehydration-responsive element-
binding protein (DREB2A)

Plays
expre
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hormone pathways identified, ABA and ethylene biosynthesis
genes were up-regulated under ammonium treatment in S. neei.
In our study, ABA was found in one pathway (plant hormone signal
transduction) and ethylene was found in three pathways (biosyn-
thesis of secondary metabolite, plant hormone signal transduction)
in the top 10 KEGG table (Table 4 and Table 5, and Table S2). We
found that S-AdoMet, SAM and ACC (direct precursor of the plant
hormone ethylene) [65] (Fig. 6) are centrally involved in ethylene
biosynthesis, and ZEP, VDE1 and ABA2 are involved in ABA biosyn-
thesis. In addition, we found the key ABA responsive element bind-
ing factor and ethylene-responsive transcription factor. Therefore,
it seems that the transduction pathway, regulated by ABA and
ethylene, plays an important role in the stress response of S. neei
to NH4

+.
The biosynthesis pathways of polyamines (PAs) and ethylene

are interrelated, with SAM as a common precursor that can be
used to form ACC, the precursor of ethylene that is active in the
conversion of PAs [66]. Their physiological functions are distinct
and at times antagonistic [67], but both have been identified as
important signaling molecules involved in stress tolerance [68].
In this study, overexpressed genes related to the metabolic path-
ways of polyamines were found (Table 5, Fig. 6, and Table S2).
According to Navin et al. [69], putrescine, spermidine, and sper-
mine biosynthesis are also involved in the amelioration of
drought, salinity, cold, and heat stresses. Polyamines counter
stress by binding with nucleic acids, proteins, and phospholipids
to stabilize their structures in response to diverse abiotic stress
conditions [69]. Bouchereau et al. [70] stated that NH4

+ nutrition
is associated with significant changes in the free polyamine con-
tent in the shoots or roots of plants, which could be key to the
protection of a stressed cell. We found three genes, PAO1, PAO2
eei.

Log2-
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change
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nsation of glutamate and ammonia to form glutamine

22.0

ed in ammonium transport 7.75
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cription factors that regulate expression of target genes involved in
tolerance to drought, high salinity, and osmotic stress

4.2

a critical role in plant development and abiotic stress-mediated gene
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Fig. 6. Putative model of ammonium metabolism in Salicornia neei, polyamines and ethylene biosynthesis, according to the major DEGs that were modulated by NH4
+:

ammonium transporter 1 (AMT1), glutamine synthetase 1 (GS1), ferredoxin-dependent glutamate synthase (Fd-GOGAT), glutamate (Glu), glutamine (Gln), pyrroline-5-
carboxylate synthetase (P5CS), 2-oxoglutarate (2-OG), dicarboxylate transporter 1 (DiT1), arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC1),
tricarboxylic acid cycle (TCA), and potassium K+ channel, ACO, ACC. Figure adapted from Ma et al. [30] and Chen et al. [60].
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and PAO4, encoding polyamine oxidase (PAO), which is an
enzyme with distinct physiological roles that is responsible for
polyamine catabolism. In plants, increasing evidence suggests
that PAO genes play essential roles in the abiotic and biotic stress
response, as some PAOs catalyze the reverse reaction of PA syn-
thesis via the PA back-conversion pathway [71]. Tavladoraki
et al. [72] identified PAO1 in Arabidopsis as an enzyme that pos-
sesses back-conversion capacity, responsible for the conversion of
Spm to Spd. Similarly, Moschou el al. [73] identified that, in Ara-
bidopsis, PAO1 and PAO4 were able to convert Spm to Spd, and
PAO2 and PAO3 catalyzed the production of Spd from Spm before
producing Put. This result suggests the involvement of PAO genes
in stress responses, and their probable implications for PA home-
ostasis in S. neei.

Considering the possible abiotic stress induced by ammonium-
based nutrition, we looked for processes activated in the plant that
help to avoid ammonium accumulation or to mitigate its effects.
Thus, sets of 72 up-regulated and 19 down-regulated genes related
to nitrogen metabolism were found to be modulated by NH4

+ at
salinity concentrations close to 600 mM NaCl in the shoots. Among
the main genes recognized in the metabolism of NH4

+ in plants, we
propose a possible route based on several up-regulated genes, such
as GS, GLT-1, 2-oxoglutarate dehydrogenase (2-OGD), ferredoxin-
dependent glutamate synthase chloroplastic (Fd-GOGAT), and glu-
tamate synthase 1 (NADH) chloroplastic isoform X1 (GLT1)
(Table 5, Fig. 6 and Table S2). Similar results have been published
concerning the halophyte plant Salicornia europeae, which showed
high GS and GDH activity at high salinity concentrations [30]. Fur-
ther, Ma et al. [30] noted that Salicornia plants fed with ammonia
also require salinity of 200 mM NaCl or more in the substrate, con-
ditions that can presumably stimulate the detoxification mecha-
nisms generated by stress [74]. This could explain the ability of
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halophyte plants to thrive in environments where salinity is high
and ammonia is a common nutrient. It has previously been
revealed that some wetland plants and other marine species that
grow in terrestrial habitats where NH4

+ prevails over NO3
� have a

special preference for ammonia [75].
In plants, diverse abiotic stresses have been shown to induce

autophagy, including nutrient starvation and oxidative stress,
improving plant resistance [76]. The energy sensors SNF-related
kinase 1 (SnRK1) and target of rapamycin (TOR) control autophagy
not only under energy deficiency, but also under diverse stress
conditions [77]. Signorelli et al. [77] have suggested that the accu-
mulation of GABA, PA, ethylene and ABA under stress conditions
can indirectly control autophagy as well, by different pathways.

Studies have theorized that additional cytosolic nutrients can
be maintained by compartmentalizing them at sites where they
are not metabolized, such as the vacuole [78,79]. This direct encap-
sulation of nitrogen is possible through specialized autophagic
vesicles that subsequently fuse with the vacuole for proteolysis
and hydrolysis [80]. Moreover, materials such as nutrients can be
remobilized to new growing organs and sinks, such as seeds. In
Arabidopsis, it was observed that autophagy can regulate the abi-
otic stress caused by the excessive uptake of toxic ions; researchers
reported that the level of autophagy peaks within 30 min after salt
stress, and then settles into a new homeostasis, but such an induc-
tion is absent in defective mutants in autophagy [81]. In this tran-
scriptome, we found a series of autophagy-related genes (ATGs)
that are responsible for the initiation and formation of autophago-
somes, such as the following: 1) the ATG1/ATG13 kinase complex
that initiates autophagosome formation; 2) ATG9 forms a complex
with accessory proteins ATG2 and ATG18, which promotes phago-
phore expansion and has been described as the only integral com-
plex necessary for the formation of the autophagosomal membrane



Fig. 7. Putative schematic diagram of the autophagy process in Salicornia neei. Energy sensors SNF-related kinase 1 (SnRK1), target of rapamycin (TOR), autophagy-related
protein 1 (ATG1), autophagy-related protein 11 (ATG11), autophagy-related protein 101 (ATG101), autophagy-related protein 13 (ATG13), autophagy-related protein 9
(ATG9), autophagy-related protein 2 (ATG2), autophagy-related protein 18, vacuolar protein sorting 34 (VPS34), vacuolar protein sorting 15 (VPS15), autophagy-related
protein 6 (ATG6), protein sorting 8 (ATG8), phosphatidylserine decarboxylase proenzyme 2 (PSD2) (2.0-fold). In dotted oval ATG not observed. Figure adapted from Chen et al.
[80].
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[82]; 3) a complex for vesicle nucleation; 4) the ATG8/PE conju-
gates, which are located in both the inner and the outer autophago-
somemembranes, aid phagophore expansion and vesicle closure to
form autophagosomes, and recognize autophagic cargoes through
ATG8-interacting proteins [83]. These genes related to autophagy
are included in the autophagy pathway and others (Table 3). This
vacuolar complex is probably induced to avoid apoplastic acidifica-
tion, which generates stress and leaf senescence [28,84,85] (Fig. 7).
5. Conclusions

The results suggest that the ammonium detoxification system
in S. neei is mediated by a wide variety of up-regulated genes that
are associated with the maintenance of ammonium homeostasis
through the activation of glutamine and glutamate synthetase,
accompanied by the biosynthesis of the phytohormones and
polyamines involved in the protection of important protein struc-
tures under stress conditions.

In S. neei, the vacuolar complex was probably created to avoid
the apoplastic acidification induced by ammonium nutrition.

Cell wall biosynthesis may correspond to the stress response
induced by excess ammonia, taking into account the fact that sev-
eral studies addressing stress response in plants have reported the
biosynthesis of cell wall structures.

The kinetics of ammonium uptake by Salicornia neei under
ammonium nutrition have been characterized using the Michae-
lis–Menten equation. Our results support the hypothesis that S.
neei is very effective in removing ammonium at concentrations
<4 mM, compared to other species used in aquaculture wastewater
[7,86]. The maximum rates (Imax) and the half-saturation constants
(Km) for ammonium uptake were identified, demonstrating that S.
neei can be used to treat effluents with ammonium pollutants. Sal-
icornia neei showed a high affinity for the substrate, which can be
79
used to decontaminate waters with high nutrient loads derived
from marine aquaculture.
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