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Background: Ewing’s sarcoma is an extremely aggressive bone sarcoma in teenagers and adolescents. We
managed to identify the potential role of ferroptosis-related genes (FRGs) in Ewing’s sarcoma and its clin-
ical prognostic value.
Results: A total of 59 common differentially expressed FRGs were screened out. GO/KEGG enrichment
and PPI network were executed. Based on 16 prognostic-related FRGs identified by univariate Cox
regression in GSE17674, 2 molecular clusters were screened out via NMF consensus. Survival rate
and immune infiltration were totally different in two clusters. Subsequently, multivariate/step Cox
regression was conducted to identify 7 risk signatures (SLC2A1, PCK2, CHAC1, ATG13, PRKAA2,
ARNT, and SIRT1). K-M survival (p = 1.785e-06) and ROC curves (with AUC value 0.816, 0877,
0.919 in 1, 3, 5 years) were plotted to assess the good predictive ability of risk model. ICGC dataset
with K-M survival (p = 1.558e-02) and AUC value (0.886, 0.750, 0.709 in 1, 3, 5 years) was used to
validate the risk model. Risk score and clinical features (gender, age stage status) were incorporated
into a nomogram model. Immune microenvironment (IME) ingredients (ESTIMATE score, immune
cells, immune-related pathways, and checkpoint genes) between two risk groups were also explored.
High-risk group possessed an activated immune status compared to low-risk group. Finally,
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prognostic signatures exhibited perfect diagnostic ability in ES occurrence, and several drugs showed
IC50 sensitivity to different risk groups.
Conclusions: Our study identified 7 prognostic signatures of FRGs and explored related immune infil-
tration which provided new aspects for future research in Ewing’s sarcoma.
How to cite: Jiao X, Li Q, Xu X. Prognostic implication of a ferroptosis related gene signature asso-
ciates with immunity in Ewing’s sarcoma. Electron J Biotechnol 2023;64. https://doi.org/10.1016/j.
ejbt.2023.01.004.
� 2023 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ewing’s sarcoma (ES) is a primary bone sarcoma with an inci-
dence of 3 per million in teenagers and adolescents [1]. Males tend
to have a slightly higher incidence of ES compared to females, and
common locations of ES include the metaphysis of limb bones.
Spine and sacral lesions are often present in older patients. EWSR1
gene translocation progressing to EWS-FLI1 gene fusion in t(11;
22) is present in approximately 85-90% of ES cases [2]. Addition-
ally, ES is highly susceptible to metastasis to the lungs in the early
stages, with mortality rates within 5-year survival rates not
exceeding 10% [3]. Therefore, there is an urgent need to identify
biomarkers for early diagnosis and accurate prognostic prediction
of ES patients.

Ferroptosis is a new mode of programmed cell death discovered
in recent years. It is an oxidative cell death induced by small mole-
cules in an iron-dependent manner [4]. Ferroptosis is mainly
caused by the imbalance between the production and degradation
of intracellular reactive oxygen species. Aberrant iron metabolism,
reactive oxidative species generation, and abnormal lipid peroxida-
tion are the hallmarks of ferroptosis [5,6]. Ferroptotic cells mainly
exhibit severe damage in mitochondrial morphology: reduced vol-
ume, increased membrane density and decreased cristae [7]. Cur-
rent research has demonstrated that ferroptosis is closely
involved in tumor genesis, proliferation and metastasis. Eling
et al. [8] found that artemisinin could activate ferroptosis in pan-
creatic cancer cells and inhibit the progression of pancreatic can-
cer. Louandre et al. [9] found sorafenib could promote the
occurrence of ferroptosis in HCC cells with Rb-negative status.
Also, erastin could induce gastric GC cell ferroptosis via cysteine
dioxygenase type1 [10]. ROS accumulation caused by down-
regulated SLC7A11 could induce ferroptosis in lung cancer cells
[11]. Therefore, drugs based on ferroptosis will become a new tar-
get for tumor treatment in the future.

Recently, several studies have also investigated ferroptosis-
related genes (FRGs) in tumors and developed potential prognostic
models based on FRGs which effectively predicted the prognosis of
tumors [12]. However, the role of FRGs in ES is limited. As such, we
sought to identify prognostic FRGs signatures in this study to aid in
the diagnosis and treatment of this disease.
2. Materials and methods

2.1. Data preparing

Two gene datasets, GSE17674 (GPL570) and GSE68776
(GPL5175) with corresponding clinical data, were obtained from
the Gene Expression Omnibus database (https://www.ncbi.nlm.
nih.gov/geo) via the ‘‘GEOquery” package. All gene probes were
annotated with same criterion: probes matched several gene sym-
bols were deleted and the maximum values were identified as gene
expression when repetitive probes matched one gene symbol.
GSE17674 [13] contains 44 ES samples with clinical information
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and 18 skeletal muscle set as training dataset. The GSE68776
[14] dataset contains 32 ES and 9 stem cells. We also downloaded
mRNA expression profiles of 48 ES with clinical data from Interna-
tional Cancer Genome Consortium (ICGC) database (BOCA-FR) for
test dataset. The expression profile of ICGC was transformed into
log2+1 format for further study.

A total of 259 ferroptosis-related genes (FRGs, 108 driving
genes/69 suppressor genes/ 111 markers) were collected from
the ferroptosis database (http://www.zhounan.org/ferrdb).

The workflow chart is depicted in Fig. 1. Sample characteristics
in two datasets are illustrated in Table 1.

2.2. Identification of differentially expressed FRGs, functional
enrichment, PPI network

We used ‘‘limma” package to obtain the differentially expressed
FRGs among different groups. We identified differentially
expressed FRGs between 44 Ewing’s sarcoma and 18 skeletal mus-
cle samples in GSE17674 dataset, together with DE-FRGs between
32 Ewing’s sarcoma and 9 stem cells in GSE68776 dataset. The cri-
terion was set as an absolute value of |LogFC| >0.5 and adj.P.Val
<0.05. Subsequently, we plotted Venn diagrams to visualize the
common genes DE-RFGs by the intersection of differentially
expressed FRGs in GSE68766 and GSE17674 for further survival
study.

To further investigate the function of DE-FRGs, GO and KEGG
enrichment were performed with ‘‘clusterProfiler” package [15].
We utilized the STRING (http://string-db.org/) to construct protein
interaction networks based on DE-FRGs (minimum required inter-
action score >0.7).

2.3. Identification of prognostic-related FRGs and correlation

First, univariate Cox regression analysis was performed to
determine prognostic-related FRGs (PR-FRGs) (P < 0.05) with ‘‘sur-
vival” package. In addition, correlation analysis with Pearson
method was used to evaluate the relationships between PR-FRGs.

2.4. Consensus clustering analysis

Two molecular clusters with DE-CRG were identified according
to nonnegative matrix factorization (NMF) clustering algorithm
using ‘‘NMF” package [16]. Log-rank test was used to calculate
the p-value and HR. Kaplan-Meier curves were plotted to compare
the survival rate in different molecular clusters. The difference in
infiltrating immune was evaluated between clusters.

2.5. Risk model construction and validation

Subsequently, multivariate Cox and step regression were per-
formed to screen out the risk signature with the lowest Akaike’s
information criterion utilizing ‘‘survminer” package [17]. Eventu-
ally, the risk score of each sample was calculated: risk score = Εi
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Fig. 1. Workflow chart of data analysis.

Table 1
The ES samples in training and test datasets

Variables GSE17674 dataset ICGC dataset

Numbers 44 48
Age, years (%)
�14 33 (82.81%) 32 (66.67%)
<14 11 (17.19%) 16 (33.33%)
Gender (%)
Female 20 (31.25%) 21 (43.75%)
Male 44 (68.75%) 27 (56.25%)
Survival status (%)
Alive 24 (37.5%) 26 (54.17%)
Dead 40 (62.5%) 22 (45.83%)
Stage (%)

Primary
Metastasis/Recurrence

32 (72.7%)
12 (27.3%)

34 (70.83%)
13 (27.08%)
1 without Stage
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coefficient (gene)�expression (gene). We set the median value of
risk score as the cut point; all samples were divided into two
groups: high risk and low risk. The distribution of risk score and
survival state was determined. The PCA analysis was conducted
with ‘‘scatterplot3d” package. Kaplan-Meier survival method,
time-dependent receiver operating characteristic (ROC) and C-
index were plotted to evaluate the efficiency of prognostic risk
model.

Additionally, the ICGC dataset was set as external test dataset
for further validation of the performance of risk signatures.

2.6. Nomogram construction and validation

To assess the independence of risk model for samples, clinical
data (including gender, age, stage status) and risk score were eval-
uated by univariate and multivariate Cox regression. Utilizing
‘‘rsm” package, nomogram was established, which was employed
for predicting the survival of ES. Finally, calibration curves were
used to assess the accurateness of the 1, 3, 5 years of prediction.

2.7. Immune infiltration analysis

We evaluated the overall level of immune infiltration by ESTI-
MATE algorithm [18]. ssGSEA algorithm was used to evaluate the
difference between high- and low-risk groups in the infiltration
of 28 immune cells. P < 0.05 suggested an accurate estimation.
44
We also accessed the 13 immune functions and the expression
level of 10 checkpoints (CD40, LGALS9, TMIGD2, ICOSLG, TNFRSF4,
LAIR1, CD48, TNFSF15, KIR3DL1, and BTNL2) in different risk
groups.

2.8. Diagnostic ability of risk signatures and drug sensitivity

For further understanding the predictability of risk signatures in
the occurrence of ES, ROC curves with AUC value were drawn, and
we validated them in GSE68776 dataset.

The ‘‘pRRophetic” package [19] was used to explore the half-
maximal inhibitory concentration (IC50) of chemotherapy drugs
between different risk groups. We downloaded all cell line expres-
sion data from Genomics of Drug Sensitivity in Cancer (GDSC)
(www.cancerrxgene.org) and compared with expression profile of
training dataset. Finally, based on IC50 of chemotherapy drugs pre-
dicted, we demonstrated the drugs were potentially benefited to
samples in different risk groups.

3. Results

3.1. Differentially expressed FRGs (DE-FRGs) identification, functional
enrichment, and PPI Network

A total of 140 differentially expressed FRGs were identified in
GSE17674, together with 95 differentially expressed FRGs in
GSE68766. The volcano and heatmap were displayed in Fig. 2a,b,
c,d. Subsequently, we got 59 common DE-FRGs by the intersection
of two differentially expressed FRGs for further study. The common
DE-FRGs were displayed by Venn plot in Fig. 2f.

The functional enrichment of 59 DE-FRGs provided a biological
understanding of these genes and were displayed in Fig. 2e. The
biological process was remarkably involved in response to nutrient
levels, response to oxidative stress, and cellular response to chem-
ical stress. Cellular component analysis suggested that the apical
part of cell, membrane raft, and membrane microdomain were
mainly enriched. The results of molecular function were majorly
located in antioxidant activity, long-chain fatty acid-CoA, and
ligase activity. KEGG showed that these genes were mainly associ-
ated with autophagy-animal, FoxO signaling pathway, chemical
carcinogenesis-reactive oxygen species and ferroptosis. The PPI



Fig. 2. DE-FRGs identification, functional enrichment, and PPI network: (a,b) Volcano plot of DE-FRGs and heatmap of PR-FRGs in GSE17674; (c,d) Volcano plot of DE-FRGs
and heatmap of PR-FRGs in GSE68766; (e) The results of GO and KEGG analysis; (f) Venn diagram showing the 59 intersectional genes between two DE-FRGs; (g) PPI network
of 59 DE-FRGs.
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network of 59 DE-FRGs created with the minimum required inter-
action score >0.4 is present in Fig. 2g.
3.2. Identification of prognostic-related FRGs and correlation

We evaluated 59 DE-FRGs by univariate Cox regression analysis
and identified 16 genes as prognostic-related FRGs (PR-FRGs). The
forest map showed the hazard ratio of 16 PR-FRGs in Fig. 3a, green
indicated protect factor, while red indicated risk factor. The corre-
lations of 16 PR-FRGs were explored to further understand their
interactions. Fig. 3c revealed that there was a close correlation
between the expressions of the 16 PR-FRGs. For instance, SIRT1
was negatively correlated with DUOX1 (r = 0.56), while TF1 was
positively correlated with PCK2 (r = �0.55).
Fig. 3. Identification of prognostic-related FRGs and correlation: (a,b) The hazard
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3.3. Classification of molecular clusters

On the basis of the 16 PR-FRGs, two molecular clusters (C1 = 23,
C2 = 21) were identified by NMF consensus. PCA was used to val-
idate the two molecular clusters. We found that C2 had a better
overall survival than C1 (p = 9.055e-03). The heatmap and boxplot
showed that the C1 samples and C2 samples had different expres-
sion levels of FRGs.

We found that immune cells, such as activated CD4 T cell, acti-
vated CD8 T cell, natural killer T cell, and type 2 T helper cell, were
all significantly up-regulated in C1, and C1 was also abundant in
APC-co-stimulation, T-cell-co-inhibition, and checkpoint genes
LAIR1, and BTNL2 (Fig. 4).
ratio forest map of univariate and step regression; (c) Correlation of PR-FRGs.



Fig. 4. Two molecular clusters identified by NMF consensus: (a) Two molecular clusters based on 16 PR-FRGs; (b) PCA result of two clusters; (c) Kaplan-Meier survival curves
between molecular clusters; (d,e) Heatmap and boxplot of DE-FRGs between molecular clusters; (f,g) Heatmap and boxplot of immune cells between molecular clusters; (h,i)
Boxplot of immune pathways and checkpoints between molecular clusters. (‘‘***”, ‘‘**”, ‘‘*”, ‘‘ ”, P = 0, 0.001, 0.01, 0.05, 1).
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Fig. 4 (continued)
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3.4. Construction of risk model based on FRGs

Subsequently, multivariate Cox and step regression were con-
ducted, 7 FRGs (SLC2A1, PCK2, CHAC1, ATG13, PRKAA2, ARNT,
SIRT1) with the lowest AIC were generated as the prognostic signa-
48
ture. Forest map was used to visualize the risk model in Fig. 3b.
According to the hazard ratio of 7 signatures, SLC2A1 and CHAC1
were regarded as risk factors while PCK2, ATG13, PRKAA2, ARNT,
and SIRT1 were protect variables. Additionally, SLC2A1, PCK2,
CHAC1, ATG13 in 7 signatures were statistically significant with
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p < 0.05, indicating them were independent prognostic indicators.
Risk score formula was determined: risk score = SLC2A1*1.91 +
PCK2*-1.017 + CHAC1*2.282 + ATG13*-1.368 + PRKAA2*-0.451 +
ARNTL*-0.789 + SIRT1*-0.646. According to the median risk scores,
we stratified 44 ES samples into high- and low-risk groups. The
distribution of risk score, survival status was shown in Fig. 5a,b.
It reflected samples in different groups with different prognoses.
The PCA showed a clear separation in two risk groups. Kaplan-
Meier method indicated the survival rate of high-risk group was
significantly lower than low-risk groups (p < 0.001). The AUC value
of ROC curves was 0.816, 0.879, 0.921 in 1, 3, 5 years, respectively.
Heatmap displayed the relationship between clinical features of ES
and the expression of risk signature in Fig. 5f. Except for PCK2, the
expression levels of 6 signatures, SLC2A1, CHAC1, ATG13, PRKAA2,
ARNTL and SIRT1 in different risk groups, are significant differences
(p < 0.05) in Fig. 5g. We found that there was a close positive cor-
relation among SLC2A1, CHAC1, and PRKAA2 in Fig. 5h.

3.5. Validation of the prognostic signature

Moreover, the prognostic model was verified by ICGC dataset.
The samples in ICGC were also divided into high- and low-risk
groups according to median risk scores. Kaplan-Meier method
revealed that high-risk group had a worse survival rate
(p = 1.588e-02) in Fig. 6c. The AUC values under ROC curves were
0.886, 0.750, 0.709 in 1, 3, 5 years respectively in Fig. 6d. The
expression levels of SLC2A1 CHAC1 and ATG13 in groups were sig-
nificant difference. As in GSE17674 dataset, SLC2A1, CHAC1, and
PRKAA2 also showed a close positive correlation between each
other in Fig. 6h. These indicated that the prognostic model exhib-
ited excellent performance in prognostic prediction.

3.6. Clinical features associated with risk model

Survival analysis was further applied to clinical subgroups in
GSE17674 dataset. Our data indicated that the risk model showed
excellent performance in predicting outcome in age � 14 years
(p < 0.001), age <14 years (p = 0.056), female (p < 0.001), male
(p = 0.001), stage-primary (p = 0.001), stage metastasis
(p < 0.001) in Fig. 7a.

Compared with clinical features (sex, age, stage), risk score had
the highest AUC values in 1, 3, 5 years in Fig. 7b. The C-index of risk
score also was higher than all clinical features (sex, age, stage) in
Fig. 7c. Fig. 7d displayed the relationship of molecular clusters, risk
groups and clinical features. These above results illustrated the
excellent predictive ability of risk score.

3.7. Establishment and validation of nomogram

As shown in Fig. 8a, the risk score was an independent prognos-
tic factor demonstrated by univariate and multivariate Cox regres-
sion with P < 0.05, no prognosis association with clinical features:
gender, age, and stage. Subsequently, we incorporated risk level
and clinical features (sex, age, stage) to construct a nomogram
model to predict the rates of overall survival in 1, 3, 5 years in
Fig. 8b. The result of calibration curves indicated high efficiency
of nomogram Fig. 9d.

Meanwhile, nomogram in ICGC dataset was also constructed.
Calibration curves showed its good predictive accuracy for the sur-
vival prognosis of ES in Fig. 9c,e.

3.8. Immune infiltration analysis

The ESTIMATE algorithm illustrated higher stromal score in
low-risk group (Fig. 10a). Subsequently, ssGSEA analysis was used
to evaluate the abundance of diverse immune cells. The result
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revealed that central memory CD4 T cell, immature B cell were sig-
nificantly enriched in the low-risk group, but the high-risk group
had a significant abundance of activated CD4 T cell, activated
CD8 T cell, CD56dim natural killer cell in Fig. 10b,c,d,e,f,g,h.
Fig. 10i revealed that risk score was negatively correlated with
the abundance of most immune cells. High-risk group exhibited a
higher level of T cell co-inhibition Fig. 10j. The immune checkpoint
genes, CD40 and TMIGD2, were highly expressed in high-risk
group (p < 0.05) in Fig. 10i. Risk signatures were correlated with
immune cells, such as CHAC1 was positively related to activated
CD4 T cell (r = 0.63), while SIRT1 was negatively correlated with
CD56dim natural killer cell (r = �0.54).
3.9. Diagnostic ability of risk signatures and drug sensitivity

We studied the predictability of risk signatures in occurrence of
ES. The AUC values of SLC2A1, PCK2, CHAC1, ATG13, PRKAA2,
ARNTL, and SIRT1 were 0.664, 0.979, 0.984, 1, 1, 1, and 0.915,
respectively. We validated them in GSE68776, and the AUC values
of SLC2A1, PCK2, CHAC1, ATG13, PRKAA2, ARNTL, and SIRT1 were
1, 1, 0.861, 0.969, 0.854, 0.799, and 0.711, respectively.

We explored drug sensitivity between different risk groups via
‘‘pRRophetic” package. The result demonstrated that low-risk
group was predicted to benefit from ABT.263, AICAR, KU.55933,
RO.3306, and SL.0101.1, while high-risk group benefited more from
AKT-inhibitor-VIII, AP.24534, AS601245, AZD6482, Bexarotene,
Bleomycin, CCT007093, CHIR.99021, FTI.277, Imatinib, JNK.9L,
MG.132, Midostaurin, and PF.562271.
4. Discussion

Ewing’s sarcoma is one of the most aggressive bone sarcomas.
Studies report that the 5-year survival rate of ES is from 65% to
80%. It decreased to 30% after recurrence and metastases [20]. Early
diagnosis and appropriate treatment could significantly improve
the 5-year survival rate [21]. Ferroptosis as a new form of cell
death plays an important anti-cancer role in colorectal cancer
[22], gastric cancer [10] and hepatocellular carcinoma [9]. Potential
prognostic biomarkers based on FRGs are identified in various
types of human cancer. However, there has little study reported
to comprehensive analysis of the relationship between ferroptosis
and clinical features in ES.

In the current work, we first screened out 59 FRGs that were dif-
ferentially expressed between ES and normal tissues. Functional
enrichment uncovered that these genes were remarkably involved
in response to nutrient levels/ oxidative stress, apical part of cell,
membrane raft, membrane microdomain antioxidant activity,
long-chain fatty acid-CoA. KEGG showed that these genes were
mainly associated with autophagy-animal, FoxO signaling path-
way, chemical carcinogenesis-reactive oxygen species and ferrop-
tosis. These pathways were closely related to the biological
behaviors of various tumors, which suggested that dysfunction of
ferroptosis was crucial in the development of ES. Based on 16
PR-FRGs identified by univariate Cox regression, two molecular
clusters were identified via NMF consensus. Kaplan-Meier survival
curves display the overall survival time was worse in C1 than in C2.
Analysis of immune infiltration indicated that C1 was charactered
by activated immunity status, such as immune cells: activated CD4
T cell, activated CD8 T cell, natural killer T cell, and type 2 T helper
cell, immune pathways and checkpoints: APC-co-stimulation, T-
cell-co-inhibition, LAIR1, and BTNL2. We conclude activated
immunity status but worse survival rates in C1.

Finally, 7 genes were screened out by step regression with the
lowest AIC to construct the risk model. The outcomes of Kaplan-
Meier and ROC curves exhibited the good predictive ability of risk



Fig. 5. Prognostic value of 7 FRG signatures in training dataset: (a, b, c, d, e, f, g, h) Distribution of the risk score, survival status, K-M survival analysis, time-ROC analysis, PCA
analysis, heatmap of the FRGs signature, boxplot of the FRGs signature (‘‘***”, ‘‘**”, ‘‘*”, ‘‘ ”, P = 0, 0.001, 0.01, 0.05, 1) and correlation of FRGs signatures (red: positive
correlation, green: negative correlation).
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model in training and validation datasets. Zhao et al. [23] reported
a risk model based on three FRGs (AURKA, RGS4, and RIPK1) which
was different from ours. The AUC values in 1, 3, 5 years were 0.81,
50
0.79, and 0.74 in training dataset, and 0.70, 0.67, 0.61 in GSE63157,
and 0.770, 0.770, 0.663 in SRAC dataset. Our proposed signatures
had higher AUC: 0.816, 0.877, and 0.919 in GSE17674, and 0.886,



Fig. 6. Prognostic value of 7 FRG signatures in ICGC. (a, b, c, d, e, f, g, h) Distribution of the risk score, survival status, K-M survival analysis, time-ROC analysis, PCA analysis,
heatmap of the FRGs signature, boxplot of the FRGs signature (‘‘***”, ‘‘**”, ‘‘*”, ‘‘ ”, P = 0, 0.001, 0.01, 0.05, 1) and correlation of FRGs signatures (red: positive correlation, green:
negative correlation).
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0.750, 0.709 in ICGC, which indicates high diagnostic value. Clinical
subgroup analysis demonstrated that the risk model also exhibited
great efficiency in different clinical subgroups. Then, we demon-
51
strated risk score was an independent prognostic factors, not
affected by clinic features (sex, age, stage) by univariate and mul-
tivariate regression. Nomograms were constructed based on risk



Fig. 7. Subgroup survival analysis in GSE17674: (a)K-M survival analysis of clinical subgroups: age, sex, stage; (b) ROC of risk score and clinical features (sex, age, stage) in 1,
3, 5 years; (c) C-index of risk score and clinical features (gender, age, stage). (k) Alluvial diagram of molecular cluster, risk group and clinical features.
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level and clinical features in GEO and ICGC datasets. Calibration
curves in 1, 3, and 5 years demonstrated that the nomograms
had a high prognostic predictive value. Interestingly, we found that
risk signatures exhibited well in the diagnostic occurrence of ES.
Drug sensitivity was also done to explore the IC50 of chemical
drugs between risk groups.
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This ferroptosis-based risk model was composed of 7 FRGs:
SLC2A1, PCK2, CHAC1, ATG13, PRKAA2, ARNTL, and SIRT1. These
7 signatures were related to the oncogenesis and progression of
different types of cancer, and their biological behavior in tumor
had been widely reported. SLC2A1 encodes the glucose transporter
GLUT1, which promotes glycolysis and proliferation and migration



Fig. 8. Establishment and validation of nomogram: (a) Independence results of univariate and multivariate regression; (b,c) Nomogram in GSE17674 and ICGC; (d,e) the
calibration plots for predicting 1, 3, 5 years OS in GSE17674 and ICGC.
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of various tumors [24]. Min et al. [25] revealed that up-regulated
SLC2A1 could lead to cancer cell proliferation, decreased immune
cell infiltration and a low prognostic nutrition index in gastric can-
cer. Guo W et al. also demonstrated that up-regulated SLC2A1 was
53
significantly related to poor prognosis, low immune infiltration in
LUAD and CRC [26]. We found that SLC2A1 was downregulated in
ES samples and acted as a risk factor in oversurvival. PCK2 inhibits
the proliferation of lung cancer cells by acting as a regulator of



Fig. 9. The results of immune infiltration analysis: (a) Violin plot of ESTIMATE Score between different risk groups; (b,c,d) Heatmap, and boxplot of immune cells between
different risk groups; (e, f) Boxplot of immune-related pathways and checkpoints between different risk groups; (i) Correlation of risk signatures and immune cells (‘‘***”, ‘‘**”,
‘‘*”, ‘‘ ”, P = 0, 0.001, 0.01, 0.05, 1).
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mitochondrial respiration to reduce glutathione production [27].
Meanwhile, PCK2 was also reported as a protective factor in breast
cancer [28]. Chao C et al. showed that PCK2 was able to reduce can-
cer stemness, thereby inhibiting the progression of BLBCs [29]. Our
present study reinforced that PCK2 acted as a suppressor in the
progression of various tumors, including ES. Goebel et al. [30]
54
reported found that CHAC1 was up-regulated in patients with poor
prognosis in breast and ovarian cancers. CHAC1 promoted ferrop-
tosis via the GCN2-eIF2a-ATF4 pathway in TNBC [31]. Our risk
model indicated that CHAC1 was a risk prognostic biomarker for
ES. As the most crucial substrates of TORC1, ATG13 plays an impor-
tant role of autophagy regulators. Research shows that targeting
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ATG13 inhibits the autophagy-mediated proliferation of colorectal
cancer [32]. Niu et al. [33] reported that ATG13 could induce
autophagy-mediated apoptosis of hepatocellular carcinoma. Our
results suggested that ATG13 may act as a risk factor in ES progno-
sis. PRKAA2 induced sustained phosphorylation of p53, and accel-
55
erated cellular senescence to inhibit cell proliferation [34]. PRKAA2
was also proved as a tumor repressor in CRC [35]. Down-regulated
PRKAA2 leads tumor cell proliferation and larger xenografts in
bladder cancer [36]. Liu et al. [37] reported that ARNTL acted as a
regulator of circadian clock to promote lipid peroxidation and



Fig. 10. Diagnostic ability of risk Signatures and drug sensitivity: (a, b) ROC curves of risk signature in training and GSE68776 datasets; (c) Result of drug sensitivity between
different risk groups.
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induce cell ferroptosis. Yeh et al. [38] demonstrated that the high
level of ARNTL restored c-MYC rhythm and service as a tumor sup-
pressor in ovarian cancer. In our risk model, PRKAA2 and ARNTL
acted as tumor suppressors and could be prognostic biomarkers
for ES. SIRT1 is a member of the sirtuin family and services as a
tumor suppressor in gastric cancer through STAT3-MMP-13 axis
[39]. But Chen et al. [40] reported that SIRT1 up-regulates the
expression of GLUT1, and promotes the proliferation of bladder
cancer cells. In our risk model, SIRT1 was a risk prognostic factor.
SIRT1 may play different roles in different cancers. The mechanism
of SIRT1 in various types of cancers needs further study.

Previous studies addressed a close connection between progno-
sis and immunity in various tumors [41], so we explored immune
infiltration in risk model. Our study revealed that the low-risk
group had a higher stromal score. In ssGSEA, the high-risk group
had a significant abundance of activated CD4 T cell, activated
56
CD8 T cell, CD56dim natural killer cell. Immune-related pathways
and checkpoint genes, such as T cell co-inhibition, CD40 and
TMIGD2, were also highly expressed in high-risk group. The signif-
icant difference in immune infiltration in risk groups suggested
ferroptosis might affect ES by influencing immune infiltration.
Similar to infiltration immunity in molecular clusters, we conclude
activated immunity status but worse survival rates in high-risk
group and molecular C1. The problem faced by researchers was
how to activate these immune cells to eliminate malignant cells
in ES. The result paved the ways for immunotherapy in ES and
remained to be validated by future study.

We admitted certain limitations in the above work. First, due to
the rarity of ES, the number of samples in 2 datasets (GSE17674
and ICGC) in this study is still small. Second, only public datasets
have been used in our study, additional external data and experi-
ments are needed to further verify our results. The potential mech-
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anism of FRGs in the prognosis of ES needs further study to be
demonstrated.
5. Conclusions

Our study identified 7 prognostic signatures of ferroptosis-
related genes in ES, and developed a successful predict risk model
based on RFGs. Our study provides new aspects for future research
on ES.
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