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Background: The Asian citrus psyllid, Diaphorina citri, is a vector of the plant pathogen Candidatus
Liberibacter asiaticus (CLas), the causal agent of Huanglongbing disease. HLB represents the main threat
to the citrus industry around the world due to its fast spreading, high infectivity, and incurability. An
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alternative for the control of this plague in Rutaceae is the implementation of RNA interference (RNAi).
Here, we propose a novel method to produce small interfering RNA (siRNA) in Escherichia coli. The
method includes a reporter system to visually demonstrate dsRNA expression. We produced and tested
siRNAs against three D. citri genes: Abnormal Wing Disk (AWD), Superoxide dismutase 1 (SOD), and
Wingless (WNT). These genes play key roles in psyllid development and maturity, and thus, represent
promising targets for potential vector control.
Results: The blue coloration in bacterial cultures was easily observable, and it corroborated the genera-
tion of the dsRNA that is in the same transcript. We evaluated the dosage efficiency of siRNA using the
AWD siRNA. The RNAi treatment was evaluated, and all the siRNAs tested were able to induce silencing
(-3.05 for AWD, -2.60 for SOD and -2.57 for WNT).
Conclusions: The novel bacterial plasmid effectively produces siRNAs, and the blue color reporter is visu-
ally facilitated to check the expression of each dsRNA. Treating D. citri with the produced siRNAs resulted
in a decrease in gene expression. In addition, psyllid mortality was observed, being the highest when
treated with WNT-siRNA. Our results suggest the potential of siRNA treatment as a method for control-
ling Huanglongbing.
How to cite: Rueda-Silva JC, González-Campos LI, Durán-Armenta LF, et al. Novel bacterial plasmid pro-
duces small interfering RNAs (siRNAs) that induce effective gene silencing in the Asian citrus
psyllid Diaphorina citri. Electron J Biotechnol 2023;64. https://doi.org/10.1016/j.ejbt.2023.03.006.
� 2023 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Huanglongbing (Chinese for ‘‘yellow dragon disease” or HLB)
also known as ‘‘citrus greening” disease is the most severe citrus
bacterial infection reported so far, causing global devastation in
the citrus industry [1]. Unfortunately, HLB has become well estab-
lished in many citrus-producing regions from over 40 countries in
Africa, the Americas, and Asia, and continues to spread worldwide
[2,3,4,5]. Since citrus plants produce some of the most important
crops in the world, HLB represents billion-dollar losses to the citrus
industry per year [6]. There is an urgent need for the development
of effective strategies to prevent and mitigate the spread of HLB.

HLB is caused by three species of the Gram-negative,
a-Proteobacteria Candidatus Liberibacter: Candidatus Liberibacter
asiaticus (CLas), Candidatus Liberibacter americanus (CLam), and
Candidatus Liberibacter africanus (CLaf). Among them, CLas is the
most predominant species [6]. CLas is a fastidious, phloem-
limited, intracellular plant pathogen that has not yet been cultured
in vitro [5]. These pathogens can be transmitted easily from
infected to healthy citrus plants through either the Asian citrus
psyllid (Diaphorina citri) or the African citrus psyllid (Trioza ery-
treae) [5]. The main HLB symptoms include phloem degradation,
nutrient deficiencies, yellow shoots, leaves with blotchy mottle
patterns, decreased fruit size, yield, and quality, and ultimately,
death of the infected branches and the whole tree [7,8]. HLB has
a long latency period that can last from several months up to
two years [6,9], so infected trees may not show any visible symp-
toms at the initial stages of the infection, difficulting the early
detection of the disease. Asymptomatic trees represent a potential
reservoir for CLas and facilitate the spreading of the disease to
other trees. The HLB infectious cycle begins when D. citri feeds
from the phloem of an infected tree. CLas then resides in the sali-
vary glands and the hemolyph of the psyllid, where it multiplies
[10]. This mechanism allows the pathogen to be inoculated into
another plant the next time the vector feeds, infecting it and thus,
restarting the cycle [7]. Concerning, CLas-infected adults remain
infective throughout their lives, becoming super-spreaders of the
disease [11].

Given that CLas has not been successfully cultured in vitro yet,
most of the current methods focus on protecting the citrus trees
[12,13]. Some of these methods include the treatment with antibi-
otics, thermotherapy, plant stimulation, disease-resistant breed-
ing, and bacterial inoculation; each one presents advantages and
disadvantages. For example, the use of antibiotics may affect the
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fruit yields and residues may remain in the fruit and the surround-
ing ecosystem [13,14,15]. Likewise, temperature treatment may
affect the microbial composition in the soil [13,16,17] and is not
effective against CLas residing in the roots [18]. Moreover, the
use of nutrients and compounds to stimulate plant growth and/
or immune responses [13,15,19,20,21,22] seems to have no signif-
icant effect on late-stage HBL-positive trees [23,24,25]. With the
increasing developments of genetic engineering, the breeding of
disease-resistant varieties might represent the most promising
and sustainable approach to controlling HLB. However, the culti-
vars obtained by gene-editing approaches are still many years
away from producing desired results. In addition, there are strict
national and international regulations regarding the use of GMOs
for commercial production. Moreover, a lack of HLB-resistant
germplasm hinders new varieties generated by traditional breed-
ing [13,26]. Recently, it was demonstrated that inoculating a
CLas-positive citrus tree with Xylella fastidiosa strain EB92-1 pre-
vented the development of HLB symptoms and reduced the inci-
dence of severe symptoms. Nevertheless, this method does not
eliminate the CLas infection and reinoculation is needed every 2–
3 years [27]. Despite these efforts to mitigate the spread of HLB,
they are not effective enough to control the pathogen.

The availability of Candidatus Liberibacter and Diaphorina citri
genomes has allowed to increase the understanding of the
pathogenicity of CLas, both in citrus trees and the vector. Recombi-
nant DNA technology represents a promising tool to develop novel,
sustainable, cost-effective, and environmentally safe methods to
fight the spread of HLB [13,15,22,27,28,29,30]. RNA interference
(RNAi) technology is a highly versatile tool, as it allows to target
virtually any gene of interest with high specificity since only a
matching mRNA sequence will be targeted [31]. RNAi has been
used to assess the effects of silencing multiple different D. citri
genes. Reported targets include a homolog of boule associated with
fertility [32] and members of the carboxylesterase family [33];
silencing of these targets resulted in increased mortality in adult
psyllids [32] and nymphs [33]. Not only does RNA-induced silenc-
ing induce psyllid mortality, but double-stranded RNA (dsRNA)
remains stable for at least 72 h after application [32]. For instance,
the RNA interference-induced knockdown of the glutathione S-
transferase (GST) gene increases the psyllid susceptibility to insec-
ticides [34]. Following this approach, we selected three D. citri
genes as targets for RNA-induced silencing: Superoxide Dismutase
1 (SOD), Abnormal Wing Disk (AWD), and Wingless (WNT). We
selected these genes as they are all important for the development
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and maturation of the psyllids, thus silencing them should result in
increased psyllid mortality.

Previous reports suggest that small doses of double-stranded
RNA (dsRNA) targeting SOD triggered the RNA interference (RNAi)
pathway inducing psyllids mortality [35]. As SOD is involved in
superoxide radical detoxification, its downregulation results in
metabolic disruptions and psyllid death [35,36,37]. Likewise, the
inactivation of AWD has been shown to interrupt the development
of the nymphs and induce psyllid mortality [38]. This gene is
related to wing development during the transition from nymph
to adult, so its silencing results are lethal for D. citri
[35,37,38,39,40]. Although these two genes have been previously
targeted, we designed novel small interfering RNAs (siRNAs).

Besides SOD and AWD, we also chose WNT, a novel target that
has not been studied yet. The WNT signal transduction pathway
regulates critical events during development such as cell prolifera-
tion, tissue reparation, larvae development, organogenesis, regen-
eration processes, and fate specification in species like Drosophila
melanogaster, and it has been involved in wing development
[41,42]. The multiple roles played by WNT make it an attractive
target for RNA-induced silencing, as it is expected to decrease
the viability of the nymphs and increase mortality.

For siRNA technology to be used as a potential tool against D.
citri and mitigate the spread of HLB, it is imperative to produce
the dsRNA molecules in a cost-effective, environmentally friendly,
and scalable process. Bacterial and yeast systems offer many of
these advantages and have been used for the large-scale scale pro-
duction of recombinant proteins for therapeutic use like human
insulin. Following this approach, multiple Escherichia coli strains
and plasmids for efficient dsRNA production have been described
in the literature [43,44,45,46,47]. We designed a novel vector to
produce siRNAs targeting the previously described D. citri genes.
Our vector, BSLA, encodes for the blue chromoprotein (B) as a
reporter gene, the sense (S) and antisense (A) sequences of the
desired siRNA, and with a loop (L) in between them.

Hence, in this work, we designed novel siRNAs specific to Dia-
phorina citri SOD, AWD, and WNT genes. We cloned them and suc-
cessfully produced them on our novel BSLA vector. After siRNA
purification, we evaluated their effect on gene silencing and on
psyllid mortality. Other parameters such as the new synthesis
method and the effect of different AWD-siRNA concentrations
were evaluated as well.
2. Methodology

2.1. siRNA design

The D. citri genes AWD, SOD, and WNT were selected as targets
for RNA-induced silencing. The sequences were obtained from
their GenBank accession numbers (Table 1). We evaluated the
expression of the selected targets across different development
stages, tissues, host plants, and in the presence and absence of CLas
infection. We used publicly available RNA-seq datasets from previ-
ous studies reported through the Citrus Greening Expression Net-
work (CGEN: https://cgen.citrusgreening.org/) [48,49,50,51]. SOD,
AWD, and WNT are expressed consistently in adults (Figure S1),
therefore validating our target selection for RNA-induced silencing.
For siRNA design, we used Dharmacon siRNA design center
(https://dharmacon.horizondiscovery.com/design-center/), Invivo-
Gen siRNA wizard (https://www.invivogen.com/sirnawizard/),
and OligoWalk (https://rna.urmc.rochester.edu/cgi-bin/server_
exe/oligowalk/oligowalk_form.cgi) bioinformatic tools. We utilized
empirical design parameters for siRNA previously reported by
Birmingham et al. [52] and Yamaguchi et al. [53]. All obtained
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results with these methods were compared looking for matches,
to create a pool of candidates.

We also evaluated siRNA specificity for D. citri to prevent unde-
sired effects on other species. The candidates were tested for
matches on other species using BLAST [54,55,56] and also aligned
against homologous genes in Citrus sinensis (sweet orange), Ara-
bidopsis thaliana, Drosophila melanogaster, Anopheles gambiae (mos-
quito), Apis mellifera (honeybee), and Homo sapiens (Table S1). We
used Clustal Omega default parameters for alignments [57] (Fig. 1)
and chose siRNA candidates with no significant alignments nor
long patches of identical sequences in species other than D. citri.

Finally, the selected siRNAs were tested for both stability and
spontaneous hybridization. The thermodynamic ensemble was
tested using RNA Fold [58,59], and hybridization studies were per-
formed using BiBiServ2 RNA Hybrid [60,61]. The selected siRNA
sequences are included in Table 1.
2.2. siRNA expression plasmid construction synthesis

We designed and constructed a novel plasmid harboring a
reporter gene to verify siRNA transcription in E. coli. We developed
the BSLA plasmid (Blue chromoprotein, Sense, Loop, Antisense)
based on previously reported sense/loop/antisense dsRNA express-
ing plasmids [44,45,46]. These plasmids were expressed in Escher-
ichia coli HT115 (DE3), producing a stem-loop dsRNA linked with
the Green Fluorescent Protein (GFP) sequence, which was then
cleaved by digestion with ribonuclease A (RNase A).

Some of the components of our BSLA were taken from the iGEM

Registry of Standard Biological Parts (http://parts.igem.org/) such
as the high-copy plasmid backbone (pSB1C3), the T7 promoter
(BBa_I712074) and terminator (BBa_K2246001), the strong RBS
(BBa_B0034), and the blue chromoprotein coding region
(BBa_K592009 T573A). The desired siRNA, a 7-base loop (5’-
AAGTTCTCT-3’) [62] and the siRNA antisense sequence were
cloned between the BamHI and HincII restriction sites in the vec-
tor. BSLA also encodes for the chloramphenicol acetyltransferase
CmR as a selection marker. We generated one vector encoding
for each of the selected siRNAs (AWD, SOD, and WNT) and one
encoding for GFP as a control. Successful siRNA transcription was
denoted by the expression of blue chromoprotein. All constructs
were verified by sequencing.
2.3. siRNA synthesis and extraction

To synthesize the siRNAs, we used E. coli HT115 (DE3), which
was kindly donated by Dr. Rosa Estela Navarro González (Institute
of Cellular Physiology, UNAM, Mexico). This strain has been widely
used to produce dsRNA due to its genotype [47]. It contains the T7
polymerase-encoding gene, enabling it to generate dsRNA from T7
promoter-containing plasmids such as BSLA. More importantly, it
has a mutated RNase III-encoding gene, allowing the expression
of dsRNA without degradation, thus increasing the siRNA produc-
tion efficiency [47].

E. coli HT115 (DE3) was propagated in agar plates with ampi-
cillin (100 lg/mL), tetracycline (12.5 lg/mL). It was then trans-
formed with each BSLA plasmid following the standard
procedure and selected with ampicillin, tetracycline, and chloram-
phenicol (25 lg/ml). From the selection plate, a single colony was
inoculated into 10 mL LB medium supplemented with the triple
antibiotic selection and grown overnight at 37�C, 260 rpm. The
overnight bacterial culture was then used for the total RNA extrac-
tion by TRIzol Reagent (Invitrogen, Cat# 15596026) method fol-
lowing the manufacturer’s instructions, followed by treatment
with an RNase A at high NaCl concentrations (0.3 M) for 5 min at
37�C to degrade all ssRNA [46,63].
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Table 1
Selected D. citri genes and designed siRNA sequences.

Diaphorina citri gene GenBank accession no. Citrus Greening Solutions Gene ID siRNA sequence (5’ - 3’)

AWD XM_026830613.1 Dcitr07g08030.1.1 CCACATATTCTTTAGCGCCTAGC
WNT XM_008486571.2 Dcitr04g11660.1.1 ATTACATTTGACCTCACAGC
SOD XM_026824040.1 Dcitr05g05840.1.1 TGTCTTACTCAGTTCATGACCAC

Figure 1. RNA and protein alignments. Alignments of the siRNA target regions at RNA and protein levels on D. citri, C. sinensis, A. thaliana, D. melanogaster, A. gambiae, A.
mellifera, and H. sapiens genes. The siRNA target sequence and its translations are in red rectangles. Black boxes indicate conserved motifs. Darker shading indicates that a
particular nucleotide or amino acid is conserved amongst more of the evaluated sequences. There is no homologous gene of WNT in C. sinensis and A. thaliana.
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2.4. Diaphorina citri maintenance under controlled conditions

Diaphorina citri specimens were kindly donated by the South-
eastern Regional Laboratory of Tamarixia radiata Massive Repro-
duction located in Mérida, Yucatán, Mexico. This institution also
provided training for the safe and ethical handling of the psyllid,
following the guidelines of the National Agro-Alimentary Health,
Safety and Quality Service (Servicio Nacional de Sanidad, Inocuidad
y Calidad Agroalimentaria of Mexico in Spanish). The specimens
were kept on custom-made cages double-lined with a fine white
mesh, containing Murraya paniculata (orange jasmine) for feeding
under a controlled photoperiod (16 h light/ 8 h dark), temperature
(26-30�C) and humidity (50-80%). Murraya paniculata plants were
cleaned using a containing 5% acetic acid and 70% ethanol solution,
and the soil was covered with aluminum foil to prevent the pres-
ence of any other insect species. The population was monitored
regularly to keep a record of the number of specimens, and to sep-
arate the adult specimens from the nymphs.
2.5. dsRNA delivery method by in vivo soaking tests

We performed the dsRNA delivery methodology based on a pre-
vious report by Yu et al. [64]. To optimize the siRNA concentration
for further experiments, we tested different concentrations (20, 40,
60 and 100 ng/mL) of a siRNA solution containing AWD-siRNA. The
dose range was adopted from a previously reported dsRNA titra-
tion assay [64]. For each of the three RNAi treatments, we used a
100 ng/mL siRNA solution. GFP-siRNA (5’-CCACATATT-CTTTAGCG
CCTAGC-3’) treatment was used as a negative control.

Ten young adult psyllids were starved for 2 h and cooled down
to 4�C to reduce their movement. We applied an 8 lL droplet of
siRNA solution on the middle abdomen of each psyllid. The droplet
was left for 5 min to soak, and then, it was carefully dried using fil-
ter paper. The psyllids were placed on a fresh Murraya paniculata
shoot in an isolated container for 48 h or until mortality was
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observed. The psyllids were retrieved and flash-frozen at -80�C
for further RNA extraction and real-time PCR analysis.
2.6. Diaphorina citri RNA extraction

Twenty psyllids were frozen with liquid nitrogen and crushed
with a mortar until a homogeneous mix was obtained. A total of
500 lL of TRIzol Reagent were added to the mix prior to being
transferred to a microtube and incubated for 5 min at room tem-
perature. A total of 160 lL of chloroform were added and incu-
bated for 3 min. The mix was then centrifuged (12,000 � g, 4�C,
15 min); the supernatant was recovered and treated with 5 lL of
RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen, Cat#
10777019) and 400 lL of isopropanol. After a 10 min incubation
at room temperature and centrifugation (10,000 � g, 4�C, 10
min), the pellet was resuspended in 800 lL of 75% ethanol and ulti-
mately centrifuged (7,500 � g, 4�C, 5 min). The supernatant was
discarded, and the pellet was resuspended in 40 lL of nuclease-
free water.
2.7. Silencing analysis by RT-qPCR

After the total D. citri RNA extraction, we performed the cDNA
synthesis with ‘‘RevertAid H Minus First Strand cDNA Synthesis
Kit” from ThermoFisher (Cat#. K1631), according to manufacturer
instructions using 3 lL of RNA normalized to a concentration of
250 ng/lL. A total of 2.5 lL of cDNA were then used for RT-qPCR,
following the instructions of the kit Maxima SYBR GREEN/ROX
qPCR (ThermoFisher Scientific Cat#. K0221). The cDNA was then
amplified for 40 cycles of 94�C for 30 s, 54�C for 30 s, 72�C for 30
s, followed by 75�C for 5 min and 12�C as hold temperature. The
primer sequences for each gene amplification are described in
Table 2. We tested the specificity of the primers by evaluating their
respective melting curves. For all of them, we observed only one
peak, thus confirming primer specificity. All assays were done in
triplicate.



Table 2
Primers designed for the RT-qPCR.

Gene Primer
name

Sequence Amplicon
size

AWD AWD F
AWD R

5’-GGGGTTCAAGCTGATAGCGA-3’
5’-AGCATGGATCGGCCAACTTT-3’

180 bp

SOD SOD F
SOD R

5’-TGCCGGACCTCACTTCAATC-3’
5’-GTCATCAGGGTCAGCGTGTA-3’

199 bp

WNT WNT F
WNT R

5’-CTCAAAGATCGGTTTGACGGC-3’
5’-ATTCCCAGTGCGGGATTCTT-3’

200 bp

a-tubulin 1 TUB F
TUB R

5’-TTACTGTCTGGAGCACGGGA-3’
5’-TGGAACAGCTGTCGGTAAGTA-3’

195 bp
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The results from the RT-qPCR were analyzed by the compara-
tive Ct or 2�D DCt method [65,66]. The commonly used housekeep-
ing gene a-tubulin 1 (NCBI Gene ID: 103517567; Citrus Greening
Solutions Id: Dcitr09g02650.1.1) was used as a reference gene to
obtain the fold reduction of mRNA due to the application of each
siRNA [32,35,38,40]. The data and results were visualized using
the Python 3.9.4 library Matplotlib 3.4.1, and the statistical signif-
icance was obtained using a 2-sample t-student test with p-values
0.001, 0.01 and 0.05.

3. Results and Discussion

3.1. siRNA design

To confirm that the siRNAs were specific for Diaphorina citri, we
performed sequence alignments against homologous genes in C.
sinensis, A. thaliana, D. melanogaster, A. gambiae, A. mellifera, and
H. sapiens (Fig. 1). The generated siRNAs were between 20 and 23
nt in size with maximum and minimum mismatches of 18 and
13 for AWD, 11 and 3 for SOD, and 8 and 3 for WNT, respectively.
We aligned each siRNA’s target mRNAs and their respective amino
acid sequence to screen for possible binding with those of other
organisms. None of the aligned sequences had high homology
regions with the candidate targets. There are some conserved
amino acid motifs in both AWD (MLG) and in WNT (CCEVKCK),
which may play an important role for structure and/or function.
Despite the presence of conserved motifs, the coding sequence is
different between species (Fig. 1), therefore, the candidate siRNA
sequences can be used safely to target Diaphorina citri genes.

The sequences shown in boxes share nucleotides or amino acids
with other tested species but are not a perfect match. It has been
proven that the siRNA-induced gene silencing mechanism has a
low tolerance for mismatches, except for a few specific single
nucleotide mismatches, especially if the mismatches are located
near the 3’ end of the guide RNA [62,67]. Although some 3-4
nucleotide mismatches may induce gene silencing by repressing
translation, there must be adjacent matches with a maximum of
two nucleotides separating groups of one or two adjacent mis-
matches [67]. All siRNA candidates used differed in more than
three nucleotides with the target regions of the species tested.
None of the 3-4 nucleotide mismatches observed for the WNT
siRNA in A. gambiae and D. melanogaster, nor the 3-nucleotide mis-
match observed for the SOD siRNA in A. gambiae fulfills the neces-
sary characteristics to induce translation repression. Therefore, we
conclude that the used siRNA sequences are specific for D. citri.

3.2. siRNA bacterial expression

We developed a new method for producing siRNA in RNase III-
deficient E. coli HT115 (DE3) [47]. Our method resembles recombi-
nant protein production and could potentially be scaled for pro-
duction in bioreactors, reducing the cost of siRNA synthesis.
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Evidence of siRNA expression was observed by the expression of
blue chromoprotein, resulting in blue bacterial colonies (Fig. 2).
In the literature, we found several reports of long-dsRNA inducible
expression and post-transcription assembly by RNA hybridization
in bacterial systems [44,45,63,68,69,70]. The reported methods
employ different types of purification processes, ranging High-
Performance Liquid Chromatography to the standard bacterial lysis
[44,45,63,68,69,70,71,72]. Even in the absence of a complex purifi-
cation process, a strong silencing effect is observed, thus confirm-
ing the great potential of bacterial systems to reduce siRNA
production costs. These methods produce long dsRNAs, which are
then digested by Dicer, obtaining multiple siRNAs with varying
sequences [44,45,63,64,65,66,69,71,72]. However, the risk of unin-
tended targets increases since sequences are nonspecifically gener-
ated by Dicer. In contrast, we propose a system that enables us to
track specific siRNA production by simply observing the color of
the resulting colonies. Our BSLA system allows siRNA assembly
with the independent formation of a hairpin from the reporter
mRNA, enabling specific siRNA extraction by standard methods fol-
lowed by enzymatic treatment.

Fig. 2 shows blue chromoprotein production linked to siRNA
expression. Loop formation plays a key role in the assembly of
the siRNA; it must form independently from the reporter mRNA
and guides the vector design [73]. In addition, BSLA plasmid has
a T7 constitutive promoter recognizable by T7 polymerase, indu-
cible with Isopropyl b-d-1-thiogalactopyranoside (IPTG) in E. coli
HT115 efficient for dsRNA production [63]. We used RNase A
treatment under specific conditions to remove the reporter tran-
script and to obtain the dsRNA. This treatment effectively pro-
duces dsRNA, whilst degrading undesired RNA fragments [63].

3.3. siRNA effect on D. citri by soaking delivery

To evaluate the effect of the siRNAs on D. citri mortality, we
treated the psyllids with each one of the three siRNAs (Fig. S2).
As a negative control, we used GFP-siRNA, expecting no effects
on any of the target genes as verified by multiple alignments
(Fig. S3, Fig S4, Fig S5).

After siRNA treatment, we monitored the psyllids for 48 h and
determined their mortality rate. When applied individually (800
ng of siRNA), the highest mortality rate was observed for WNT.
WNT-siRNA treatment resulted in a 10% mortality rate after 24 h
and increased to 20% and 40% after 36 and 48 h, respectively
(Fig. 3). Both AWD-siRNA and SOD-siRNA resulted in an initial
10% mortality (24 h) and 30% mortality after 48 h.

3.4. D. citri RNA extraction and cDNA synthesis

Several ribosomal RNA subunits and RNA integrity were
assessed from the different siRNA treatments by gel electrophore-
sis (Fig. S6A). We observed single bands for AWD, SOD, WNT, and
a-tubulin that matched the expected size (180, 199, 200 and 196
bp, respectively) (Fig. S6B).

3.5. Soaking siRNA transfection

Previous reports of dsRNA application through a soaking
method, where a range from 20 to 100 ng/lL was tested showed
that the highest effect is obtained at dsRNA concentrations
between 75 ng/lL and 100 ng/lL [64]. We performed optimizing
assays using the AWD-siRNA to determine the optimal siRNA con-
centration for the soaking assays and to prevent RISC saturation.
We tested concentrations ranging from 20 to 100 ng/lL. We found
that the fold mRNA reduction increased as the concentration of
siRNA increased (Fig. 4A). When a 20 ng/lL siRNA solution was
applied, no significant mRNA reduction was observed. For concen-



Figure 2. BSLA siRNA production method. (A) BSLA vector diagram. The plasmid is constituted by a T7 promoter, followed by a RBS (Ribosome binding site), the condign
sequence of the chromoprotein blue fused to the sequence of the siRNA (sense, loop and antisense). (B) Secondary structure caused by the hybridization of siRNA sense and
antisense sequences, whilst expressing a blue chromoprotein as a reporter, resulting in blue colonies. (C) Treatment with RNAse A after RNA extraction at NaCl concentrations
higher than 0.3 M. (D) Assembled siRNA.

Figure 3. Biological effect of siRNA by soaking method on Diaphorina citri survival rate. After siRNAs treatment, the psyllids were monitored 48 hours posttreatment to
determine the mortality rate.
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trations of 40, 60, and 100 ng/lL, we observed a -2.37, -2.53, and -3
fold reduction in AWD mRNA, respectively.

dsRNA administration via soaking on Diaphorina citri allows
siRNA uptake through spiracles and cuticular permeation, which
in turns, spreads throughout the whole body and initiates a sys-
temic and persistent RNAi response [64]. Soaking silencing effi-
64
ciency depends on the dosage of siRNA applied. Previous reports
demonstrated that higher doses of dsRNA-AWD (10-10,000 ng/
nymph) increased mortality [38]. Likewise, other studies using
the soaking method on D. citri found that increasing dosages of
dsRNA yielded higher silencing effects between 10 and 300 ng/lL
[64,74,75,76]. In our study, the highest silencing effect for the



Figure 4. Fold change (log2) by siRNA application through soaking. Error bars
represent a 95% confidence interval. ** statistically significant reduction to 1%,
*** statistically significant reduction to 0.1%. In all the cases GFP siRNA treatment
was used as a negative control. (A) Change in AWD expression after siRNA
treatment at varying concentrations (20, 40, 60 and 100 ng/lL). (B) Fold mRNA
reduction for each of the target genes after treatment with its corresponding siRNA
(100 ng/lL of each siRNA).
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AWD gene was observed using a concentration of 100 ng/lL
(Fig. 4A). We confirmed that the application of siRNA through the
soaking method allowed effective silencing in a concentration-
dependent trend. Therefore, we decided to use 100 ng/lL to test
all target genes.

No silencing effects were observed for the GFP-siRNA treat-
ment, as expected for negative controls. All three siRNA applica-
tions showed significant fold mRNA reduction (�3.05 for AWD,
�2.60 for SOD and �2.57 for WNT, Fig. 4B). Remarkably, SOD
mRNA was reduced by 61.6% after siRNA treatment when com-
pared to normal expression levels (Fig. 4B). This reduction is con-
sistent with the reported 69.6% mRNA reduction observed by
Taning et al. [35], which also included randomly generated targets.
In our case, we administered small dsRNA molecules instead of
longer ones to be pre-processed by Dicer thus avoiding the gener-
ation of unspecific products and keeping only one possible target.
SOD-siRNA treatment resulted in effective silencing with 30% psyl-
lid mortality after 48 h (Fig. 3). Since SOD is overexpressed in the
hemolymph during CLas infection, it represents a promising silenc-
ing candidate [36].

Similarly, treatment with AWD-siRNA resulted in an mRNA
reduction of 67.2% (Fig. 4B) comparable to another report of
70% using long dsRNA [38]. Even though AWD is suggested to
be involved in wing development [38], we show that silencing
65
this gene on adult psyllids leads to mortality (around 30% after
48 h).

We propose WNT as a novel target for gene silencing in D. citri.
In the literature, it is reported that this gene is also overexpressed
in the hemolymph of CLas-infected D. citri [36,37]. We observed an
mRNA reduction of 61% after WNT-siRNA treatment (Fig. 4B),
which resulted in a 40% mortality rate after 48 h (Fig. 3). These
results show that WNT is a promising target for silencing as a
siRNA-based D. citri control method.

In this work, we propose our novel BSLA plasmid as a versatile
tool that can be used to produce siRNA molecules. We also demon-
strate that the bacterial-produced siRNAs effectively induce gene
silencing in Diaphorina citri. Our results not only confirm the
potential applications of siRNA technology targeting AWD and
SOD but also show that WNT is a promising target. All the tested
siRNAs induced gene silencing effectively, achieving decreases in
mRNA levels comparable to other reports in literature. Moreover,
siRNA treatment and gene silencing could lead to an increase in
psyllid mortality, but further population-wide studies over a
longer period are still required. This method could have advantages
over other methods to prevent HLB spread and infection by con-
trolling the population of the vector in a species-specific way and
without antibiotic or pesticide use.

4. Conclusions

We designed a novel plasmid, BSLA, expressing a blue chromo-
protein as a reporter of successful siRNA transcription. BSLA was
used to produce dsRNA molecules against three Diaphorina citri
genes: AWD, SOD, and WNT. The BSLA siRNA expression system
demonstrated the viability of producing siRNA in bacterial sys-
tems, which opens the possibility for large-scale production. The
designed siRNAs showed specificity for Diaphorina citri genes in sil-
ico and exhibited a high silencing efficiency when tested in vivo. A
positive correlation was observed between AWD-siRNA concentra-
tion and the silencing effect. The highest silencing effect (�3 fold
reduction) was observed using a siRNA concentration of 100 ng/lL.

The siRNAs applied to Diaphorina citri through the soaking
method resulted in more than 50% mRNA reduction in all target
genes and caused between 10-40% mortality in adult psyllids.
The highest mortality was obtained with WNT-siRNA, a gene that
was not targeted previously in literature. We report the effects of
targeting WNT for the first time, showing promising results in both
gene silencing and increased mortality. All the tested target genes
are potential silencing candidates for a siRNA-based method for
controlling D. citri populations and subsequently, the spread of
HLB disease.
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