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Background: In this study, silver nanoparticles (AgNPs) were biosynthesized using Rhizopus oryzae. The
therapeutic effect of AgNP treatment protocols for hypothyroidism induced in male albino rats via bio-
chemical as well as hematological parameters, thyroid profile, and androgen male sex hormone (testos-
terone) was evaluated.
Results: FTIR, XRD, TEM, DLS, SEM, and EDX were used to comprehensively characterize the biosynthe-
sized AgNPs. The AgNPs have a 17–35 nm diameter, according to the results of their characterization.
The average size detected by XRD was 37.96 nm, while the average size of the biosynthesized AgNPs
was 78 nm determined by DLS analysis. Furthermore, ALT, AST activity, urea, creatinine, and TSH levels
revealed a significant increase in the untreated hypothyroidism group according to potassium
dichromate-induced hypothyroidism compared to the normal control group. The untreated hypothy-
roidism group’s FT3, FT4, and albumin levels, however, significantly decreased when compared to the
normal control group. In contrast, when compared to the hypothyroidism-untreated group, the mean val-
ues of FT3, FT4, and TSH were all significantly higher and TSH was significantly lower in the hypothy-
roidism AgNPS-treated group. Furthermore, T. testosterone and F. testosterone levels revealed a
significant decrease in untreated hypothyroidism group when compared to the normal control group.
Contrarily, F. testosterone levels in the hypothyroidism-treated group were much higher than those in
the hypothyroidism-untreated group.
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Conclusions: AgNPs were successfully biosynthesized which exhibited therapeutic potential to increase
thyroid hormone levels and avoid the biochemical side effects of thyroid hormone deficiency in the ani-
mal model of hypothyroidism.
How to cite: Saied E, Hussein AS, Al-Askar AA, et al. Therapeutic effect of biosynthesized silver nanopar-
ticles on hypothyroidism induced in albino rats. Electron J Biotechnol 2023;65. https://doi.org/10.1016/j.
ejbt.2023.06.001.
� 2023 The Authors. Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
1. Introduction

The thyroid gland is one of the important endocrine glands that
play an essential and vital role in the metabolism and energy
expenditure of the body [1]. This gland is responsible for the pro-
duction, storage, and release of the thyroid hormones triiodothy-
ronine (T3) and thyroxine (T4) [2]. All of the cells in the human
body need them for appropriate development and differentiation
[3]. The proper function of all metabolically active cells depends
on the thyroid hormone. Disruption of the thyroid gland has the
potential to have far-reaching consequences throughout the body
[4]. Hypothyroidism, the second most common endocrine illness
after diabetes, is characterized by thyroid gland under activity,
resulting in thyroid hormone insufficiency [5]. Acquired hypothy-
roidism may develop from deficiencies in the processes that regu-
late thyroid hormone production [6]. Clinical evidence suggests a
relationship between a low metabolic rate and the dysfunction of
various body systems [7]. Multiple recent investigations have
linked elevated ROS production to hypothyroidism [8].

Recently, there has been an unanticipated increase in the appli-
cation of nanoparticles in a variety of fields, including molecular
biology, physics, organic and inorganic chemistry, medicine, agri-
culture and material science [9,10,11,12,13,14,15,16]. Records
show that the biological processes known as biosynthesis or ‘‘green
synthesis” of nanoparticles are gradually replacing the physical
and chemical techniques of producing metal and metal oxide
nanoparticles [17,18,19]. In order to manufacture biocompatible
metal or metal oxide nanoparticles in large quantities, the
biological technique uses extracts from plants, bacteria, fungi,
yeast, alga, and other microorganisms as reducing agents
[20,21,22,23,24,25,26]. They are widely used since many fungal
species have the ability to release enormous amounts of proteins
or enzymes and because it is simple to trade them in laboratories
[27]. Fungi have also gained more attention due to their tolerance
and ability to bioaccumulate metals, since they are involved in the
investigation of the biological creation of metallic nanomaterials
[28,29]. As a result of their rapid growth rates and abundance of
mass cells, many fungal species are also quite easy to maintain in
a laboratory [30]. It has been demonstrated that the proteins and
enzymes secreted by the aforementioned biological systems func-
tion as capping agents to give the nanoparticles stability and make
them biocompatible for a variety of biological applications, as well
as reducing agents to transform the bulk metal salts into the
appropriate nanoparticles [31]. Due to their extensive antimicro-
bial potential, which includes antibacterial, antifungal, antiviral,
and antiprotozoal capabilities, silver nanoparticles (AgNPs), a kind
of metal nanoparticle, have been shown to have an immense vari-
ety of uses, notably in the field of biomedicine [32,33].

Treatments and therapies in medicine and healthcare have
undergone a significant change as a result of the technical advance
of regulating materials at the nanoscale. So, these properties allow
the medicine to be properly targeted and distributed to tissues,
limiting toxicity to organs and maximizing the drug’s efficacy
[34]. Nanoparticles are appealing for a variety of biological
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applications due to their high surface-to-volume ratio, ability to
interact with molecular or cellular processes, and potential to
influence their functioning [35]. Nanosystems’ creative methodol-
ogy has significantly improved illness detection, imaging, sensing,
therapy, and management, thereby improving human health [36].
Silver nanoparticles (AgNPs) are one of the most attractive and
popular metallic NP types, with uses in imaging, photography,
biosensors, catalysis, and other fields [37,38]. Silver has been trea-
sured since ancient times due to its ability to fight disease and its
use in medical operations. Additionally, it has anti-inflammatory,
anti-cancer, antiseptic, and antibacterial properties [39]. Innova-
tive techniques have been used for the production of AgNPs in
order to fully utilize the potential of silver in a variety of applica-
tions. The most common techniques of synthesis are chemical
and physical, but since they require specialized equipment and
harmful materials, they are expensive and dangerous [40]. AgNPs
are one of the most valuable materials in the NPs with biomedical
applications; they are widely employed in commercial goods,
including cosmetics, nanomedical devices, apparel, sprays, home
goods, and food items. Therefore, the study aimed to evaluate the
therapeutic role of AgNP treatment protocol in order to protect
adult male albino rats from developing potassium dichromate-
induced hypothyroidism, which may be used as a promising ther-
apy instead of traditional drugs because of its safety, low price and
time consumption, in addition to discuss the safety profile as well
as the pathophysiological changes related to the administration of
AgNPs. Furthermore, the biosynthesized AgNPs were characterized
by different techniques.
2. Materials and Methods

2.1. Materials

The analytical-grade chemicals used in this investigation,
including sodium hydroxide (NaOH) and silver nitrate, an inor-
ganic substance with the formula AgNO3 and 99% purity, were
acquired from Sigma-Aldrich in Egypt. In order to create AgNPs,
AgNO3 was used as a precursor. The purest cultured medium was
all acquired from Merck in Germany (99% purity). In the current
investigation, distilled water was used for all biological syntheses
(dis. H2O). Potassium dichromate was purchased from Sigma-
Aldrich Chemical Company (Cairo, Egypt) in the form of a bottle
containing 100 g of reddish powder, (Catalogue number 309176).
Twenty-four adult male Wistar albino rats weighing about
100 ± 20 g were obtained from the animal house unit in the
National Research Centre, Giza, Egypt. Throughout the experiment,
the animals were kept in standard laboratory settings (12 h of light
and 12 h of darkness) in a room with a constant temperature
(24�C). Ad libitum tap water and typical commercial rat food were
given to the rats. All researches were carried out in conformity
with the Animal Ethical Committee of the National Research Cen-
ter, Dokki, Giza, Egypt under the ethical number (Approval No.
18157).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. Saied, A.S. Hussein, A.A. Al-Askar et al. Electronic Journal of Biotechnology 65 (2023) 14–23
2.2. Fungal growth conditions

Biosynthesis of AgNPs was carried out by Rhizopus oryzaewhich
isolated and identified, deposited in Gene-bank with accession
number MG518370 in our previous study [41]. R. oryzae was inoc-
ulated on malt extract agar (MEA) plates, then incubated for 3–5 d
at 28�C ± 2�C then kept at 4�C for further use [42,43,44,45,46].

2.3. Biosynthesis of silver nanoparticles using the biomass filtrate of R.
oryzae

Three disks (0.7 mm in diameter) of R. oryzae were grown on
malt extract broth (MEB) medium, and the pH was adapted to
6.0, shaking conditions were used throughout the incubation of
R. oryzae for 5 d at 28�C ± 2�C (150 rpm). Following the incubation
period, deionized and sterile water were used to wash the collected
biomass (15 g). After that, the cleaned biomass was reconstituted
in 100 mL of distilled water at a temperature of 28�C ± 2�C and stir-
red for 3 d at 150 rpm. After that, the subsequently suspended bio-
mass was centrifuged to get the fungal biomass filtrate, which was
then utilized in the following procedure to create AgNPs. The pH
was adjusted to pH 10, and 100 mL of fungal biomass filtrate
was combined with 2.0 mM of silver nitrate (as a metal nanoparti-
cle precursor) for 24 h in the dark at 28�C ± 2�C. After being
extracted and dried for 24 h at 120�C, the filtrate developed a dark
brown color [33,47].

2.4. Characterization of AgNPs

Different analytical methods were used to characterize the
nanoparticles, including UV–Vis spectrophotometer (JENWAY
6305 spectrophotometer), Fourier transform infrared (FTIR) (Cary
660 FTIR model), Transmission Electron Microscopy [48] (JEM-
1230, Japan, Akishima, Tokyo 196-8558), and Dynamic light scat-
tering (DLS) was carried out using a Malvern Zetasizer Nanoseries
compact scattering spectrometer from Malvern Instruments Ltd. in
Worcestershire, UK, X-ray diffraction was obtained from Philips in
Eindhoven, Netherlands, and SEM-EDX from JEOL in Tokyo, Japan.
UV–Vis spectrophotometer absorbance measurements were taken
between 300 and 800 nm. Fourier transform, infrared NP absor-
bance was recorded from 400 to 4000 cm─1. The size of nanopar-
ticles was analyzed using an X-Ray diffractometer at 40 KV and
30 mA at 37�C. Transmission electron microscopy was used to ana-
lyze the size and shape of the particles [49]. At 120 kV, TEM (Trans-
mission Electron Microscopy) pictures were captured. Before the
inspection, a carbon-coated TEM copper grid was sprayed with a
colloidal solution of AgNPs and allowed to dry in the air. Dynamic
light scattering (DLS) measurements were used to assess the AgNP
particle size distribution. The polydispersity index (PDI), is the
measure of homogeneity of the NPs solutions [29]. SEM with
EDX analysis was used to evaluate the surface morphology and
basic mapping of the produced AgNPs. The elemental composition
of the sample was determined both qualitatively and quantita-
tively using an EDX device attached to the SEM.

2.5. Therapeutic effect of AgNP treatment protocols for hypothyroidism

2.5.1. Experimental design
Twenty-four adult male Wistar albino rats weighing about

100 ± 20 g were randomly assigned to different control and treat-
ment groups. The experimental groups in common were divided
into three groups (eight rats in each group) as follows: Group I:
Rats from this group served as a normal control without any sup-
plementation; Group II (Hypothyroidism-untreated group): Potas-
sium dichromate was injected intraperitoneally into rats to cause
hypothyroidism at a rate of 2 mg/kg/bw, which was subsequently
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dissolved in 1 mL of distilled water every day for two weeks before
the rats were euthanized to confirm the condition [50]. Addition-
ally, rats in Group III (Hypothyroidism AgNP-treated group)
received a single intraperitoneal injection of AgNPs (0.75 mg/kg
of body weight) for 30 d after receiving an i.p. injection of potas-
sium dichromate to cause hypothyroidism [51]. Rats were allowed
to acclimate for one week before the experiment began while
standing for the whole four-week trial period during which drugs
were administered. At the end of the experiment, blood samples
were collected via retro-orbital under diethyl ether anesthesia.
Each blood sample was divided into two parts; the first one was
collected into a heparinized tube and used for the determination
of hematological parameters; the second part was collected into
non-heparinized tubes; after clotting, the samples were cen-
trifuged at 4000 rpm for 15 min. Sera were further separated and
used for further biochemical analysis.

2.5.2. Biochemical analyses
Liver enzymes were assessed. Serum levels of alanine transam-

inase [52] aspartate transaminase were determined, according to
Reitman and Frankel [53]. Serum albumin concentration was
determined according to the colorimetric method described by
Doumas et al. [54]. The serum urea level was estimated according
to the colorimetric method described by Fawcett and Scott [55].
The serum creatinine level was determined according to the colori-
metric method described by Larsen [56]. Serum TSH, FT3, and FT4
levels were measured using immunoenzymatic tests (Roche
Diagnostics-Mannheim, Germany). Estimation of serum testos-
terone level was adopted using the rat testosterone enzyme-
linked immune-sorbent assay (ELISA) kit according to Tietz [57].

2.6. Statistical analysis

The data were shown as means (SE). A one-way ANOVA was
used to finish the statistical analysis, and Dunnett’s test was used
to compare the treatment groups to the control group. Differences
were considered significant at p < 0.05.
3. Results and Discussion

3.1. Biosynthesis and characterization of AgNPs

The potential of R. oryzae metabolites to biosynthesize AgNPs,
which improve the production process, decrease aggregation, and
produce a smaller size, was demonstrated in this work [58]. The
color of the biomass filtrate changed when it was combined with
metal precursors, which was the first indication that NPs were
being biosynthesized. Santos et al. [59] synthesized the AgNPs
from the extracellular extract of entomopathogenic fungi.
Murillo-Rábago et al. [60] synthesized the AgNPs by using the
supernatants of Trichoderma harzianum and Ganoderma sessile.
Bukhari et al. [61], on the other hand, were successful in synthesiz-
ing AgNPs utilizing endophytic Streptomyces laurentii. Elsilk et al.
[62] reported that the biofabrication of AgNPs occurred by using
the biomass of Streptomyces rochei MS-37, a novel marine acti-
nobacterium. Otherwise, some articles dealt with the biosynthesis
of AgNPs via different biological extractions, such as plant extract
or microbiological medium [63,64,65]. Also, Some et al. [66] syn-
thesized AgNPs by utilizing leaf extract ofMorus indica L. V1. Sudar-
san et al. [67] biosynthesized AgNPs by using Cytobacillus firmus for
photocatalytic and antimicrobial activities. In fact, the metallic
nanoparticle is effective in several applications, especially in med-
ical applications.

AgNPs are the most commercially successful NPs. Its toxicity
has become a major issue due to its widespread usage in industrial,



Fig. 1. Spectra of biosynthesized AgNPs in the UV-vis range at wavelengths of 300–
800 nm.

Fig. 2. (A) The FT-IR spectra of mycosynthesized AgNPs produced by R
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biotechnological, and biomedical applications. In recent years, fas-
cinating antibacterial and anticancer properties of biologically pro-
duced AgNPs have been revealed [68,69]. Due to the existence of
proteins that reduce ions into particles, fungi can produce metallic
nanoparticles. A physiochemical study and topographical inspec-
tions were used to characterize AgNPs. AgNPs’ UV-visible spectra
are displayed in Fig. 1. A color shift to deep brown in the UV-Vis
spectrophotometer study for AgNP formation served as prelimi-
nary confirmation. Excitation of manufactured nanoparticles’ sur-
face plasmon resonance may be related to variations in color
intensity [70]. The detection of a peak in the Ag NPs spectra at
410 nm provided evidence that AgNPs were produced by mycosyn-
thesis [71]. Elshafei et al. [72], who identified a distinct peak of
AgNPs at 410 nm, also came to the same conclusion. Khan et al.
[73] synthesized AgNPs that exhibit a distinctive SPR band at
450 nm. According to Mujaddidi et al. [74], the plasmon absor-
. oryzae metabolites; (B), XRD spectrum of biosynthesized AgNPs.



Fig. 3. (A) The spherical form of the biosynthesized AgNPs was visible in the TEM
picture; (B) DLS analysis of biosynthesized AgNPs.
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bance of AgNPs had a peak at 425 nm. On the other hand, smaller
average AgNP sizes and larger concentrations of AgNPs are related
to lower and higher maximum wavelength values, respectively
[75]. According to Pallavi et al. [32], the produced AgNPs showed
a prominent, distinctive absorption peak at 418 nm. Alharbi and
Alsubhi [76] exhibit different bands at 429 and 435 nm, respec-
tively, for AgNPs and AgNPs-cis.

Concerning FT-IR Analysis, proteins and enzymes found in the
fungal biomass filtrate are crucial for the creation and stability of
nanoparticles, according to the studies by Saravanan et al. [77].
The functional groups involved in the reduction and capping of
the silver ions to the nanoscale are clarified in the country using
FTIR analysis. As shown in Fig. 2A, FTIR analysis was used to inves-
tigate the interaction between AgNPs and R. oryzae supernatant.
The biosynthesized AgNPs’ FT-IR spectra revealed strong absorp-
tion peaks at 3206.45, 1632.90, 1336.65, 1073.44, 827.27, 600.90,
510.30, 418.99 and 405.47 cm�1. The O-H stretching groups of phe-
nols and alcohols or the N-H groups of amino acids in proteins are
responsible for the peak at 3206 cm�1, respectively [78,79]. The
peak observed at 1632 cm�1 may correspond to the binding vibra-
tions of the amide I band of proteins with N–H stretching [75]. The
C-H bending form in alkanes is responsible for the shifted one at
1336 cm�1. It is possible that the signal at 1073 cm�1 represented
carboxylic (COO) residues [80]. An indication of the Amide IV
(OCN) stretch bending for protein was a stretch at 827 and
600 cm�1. The presence of a carbohydrate moiety may be the cause
of the protein stretch band that was also seen at 510 cm�1 [81]. The
calcinated AgNPs finally displayed a peak at 405 cm�1 [82]. Our
findings show that proteins are present and that they attach to
AgNPs, perhaps stabilizing them. These findings are in line with
recent research that has shown that proteins play crucial roles in
the production of AgNPs, serving as capping and stabilizing agents
[32,74,76,83].

Fig. 2B shows the XRD pattern of the biosynthesized AgNPs, in
which four distinct peaks were found at 2 h degrees: 37.88�,
44.24�, 64.4�, and 77.68�. These peaks are indexed to the (1 1 1),
(2 0 0), (2 2 0), and (3 1 1) crystal planes, respectively, demonstrat-
ing good alignment between the production of AgNPs and the crys-
talline phase of silver [29,32]. The face-centered cubic shape was
seen in the peaks for various values of 2h. Significant alignment
to the studied facet (111) was indicated by the sharp peak at 2 =
37.8� (111), and the good purity of the prepared AgNPs. The aver-
age NP size was calculated using the Debye-Scherrer equation
based on the XRD data. The FWHM (2h) value for the AgNPs was
0.23111, and their average size was 37.96 nm. These outcomes
are consistent with those reported in [65,72,84,85], where it was
found that the range of the average particle size was between 5
and 20 nm. Sudarsan et al. [67] reported that the average size of
the synthesized nanoparticles from endophytic bacteria was found
to be 14.23 nm, which is consistent with our findings. According to
Pallavi et al. [32], the average particle size of the AgNPs produced
by Streptomyces hirsutus strain SNPGA-8 was 12.74 nm.

The morphological features and approximate sizes of NPs were
investigated using TEM. In the TEM study (Fig. 3A), the produced
nanomaterial was found to be spherical with a diameter of 17–
35 nm. Streptomyces hirsutus strain SNPGA8 was successfully used
by Pallavi et al. [32] to synthesize AgNPs with a TEM imaging range
of 18–39 nm. According to research by Khan et al. [73], the pro-
duced nanomaterial has a spherical shape and a diameter between
4 and 12 nm, with an average size of around 8 nm. In the typical
diameter range of 15–30 nm, Khan et al. [86] synthesized
spheroidal-shaped PG-AgNPs. According to Kabir et al. [87], TEM
was used to characterize the morphology of the A. racemosus-
AgCl-NPs, which had an average diameter of about 17.0 nm. Khanal
et al. [85] used TEM to analyze the size and morphology of AgNPs
produced by Rubus ellipticus Sm, which is also noteworthy. They
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discovered the particles to be spherical, with sizes ranging from
13.85 to 34.30 nm. According to the TEM investigation [80], the
chemicals found in R. oryzae FBF might be used to biosynthesize
AgNPs with distinctive structures. Furthermore, the small size of
the AgNPs created in this study has the potential to be used in a
number of size-dependent biotechnological applications.

The size and size distribution of NPs in colloidal solutions were
determined with the use of DLS analysis. The scattered intensities
from time-dependent observations can be used to calculate the
hydrodynamic diameter. The electrical layers on nanoparticle sur-
faces and the capping and stabilizing agents found in solution are
frequently responsible for regulating the hydrodynamic diameter
of these particles [88]. A small number of nanoparticles are needed
for DLS in order to prevent numerous scattering effects. DLS is bet-
ter suited to monitoring aggregation during the early phase since it
is sensitive to the presence of aggregates. According to this study’s
DLS analysis, the average size of the biosynthesized AgNPs was
78 nm (36% intensity) (Fig. 3B). Khan et al. [86] state that the aver-
age size of the synthesized PG-AgNPs, as determined by the size
distribution, is about 40 nm, with a PDI value of 0.321. Hashem
et al. [80] demonstrated that the average size of the nanoparticles
distribution histogram of biosynthesized AgNPs which ranged in
size from 30 to 47 nm was 32.7 nm. Ag-NPs biofabricated using
Cytobacillus firmus had an average hydrodynamic diameter of
55.8 nm, according to Saied et al. [25]. The homogeneity or hetero-
geneity of the colloidal NPs was assessed using the polydispersity
index (PDI) value [29]. High homogeneity is indicated by a PDI
value less than 0.4, whereas low homogeneity is indicated by a
value greater than 0.4, and a heterogeneous solution is indicated
by a value greater than 1. We discovered a PDI value of 0.031
throughout our study.
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SEM was used to examine the morphology of biosynthesized
AgNPs. The SEM examination of biosynthesized AgNPs is shown
in Figs. 4A-B. This study confirmed the spherical shape and small
size of the nanoparticles found in the XRD analysis. The scanning
electron microscopy also showed that the powder particles have
a slightly aggregated structure. A small number of AgNPs were
seen clustering together to produce bigger particles. This outcome
was in line with the AgNPs found in earlier researches [74,89]. Due
to their high electrical conductivity, metal nanoparticles like silver
and gold can be easily scanned with a SEM. SEM is unable to view
the internal structure of materials, although it can offer insightful
data on particle integrity and aggregation [89]. The Ag element
was present, according to the AgNPs’ EDX profile. The Ag element
is present at 62.7% weight percentage, as shown by the EDX profile
(Fig. 4B). O and Ag contribute 37.2% and 62.7% of the total weight,
respectively. O has the greatest atomic percentage (80%), followed
by Ag with 19%.
Fig. 4. (A) SEM image of AgNPs; (B) ED
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3.2. In vivo therapeutic effect of AgNPS on induced hypothyroidism in
adult male albino rats.

One of the most prevalent endocrine conditions, hypothy-
roidism, is mostly a result of thyroid gland problems that induce
a decrease in thyroid hormone production and secretion [90].
Due to its widespread use as a heavy metal in numerous industries,
potassium dichromate was selected for this study’s hypothy-
roidism experiment [91]. Therefore, we sought to evaluate the pro-
tective effect of AgNPs on potassium dichromate-induced
hypothyroidism in male albino rats. In addition, male albino
rodents were recruited for this study because males are more sus-
ceptible to occupational infertility exposure and because female
hormones may interfere. However, females have a higher incidence
of hypothyroidism [92]. In the present study, the mean values of
TSH, Ft3, Ft4, T. testosterone and F. testosterone levels revealed a
high and significant difference in comparison between all groups
X spectrum of the formed AgNPs.



Table 1
Effect of AgNPs on thyroid profile and androgen hormones in rats subjected to Hypothyrodism..

Experimental groups Thyroid profile Androgen Hormones

TSH (UIu/mL) Ft3 (ng/dl) Ft4 (ng/dl) Total Testosterone (Pg/mL) Free Testosterone (Pg/mL)

Group I: (Normal) 4.2 ± 0.4c 1.5 ± 0.1a 1.3 ± 0.1b 7.3 ± 0.4a 3.6 ± 0.3a

Group II: (Hypothyroidism) 7.2 ± 0.5a 0.4 ± 0.0b 2.0 ± 0.2a 1.5 ± 0.1c 0.7 ± 0.1c

Group III: (Hypothyroidism + AgNPs) 5.3 ± 0.4b 0.4 ± 0.1b 1.3 ± 0.1b 2.1 ± 0.2b 2.9 ± 0.2b

Mean value represents mean of 8 records ± SE. Means with dissimilar superscript letter are significantly different at P < 0.05.
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of the animal model, including positive treated and untreated
groups, as illustrated in Table 1.

According to potassium dichromate-induced hypothyroidism
(group II), the blood TSH levels of the untreated hypothyroidism
group increase dramatically when compared to the normal control
group’s mean values. Nonetheless, Ft3 and Ft4 levels were signifi-
cantly lower in the untreated hypothyroidism group than in the
normal control group. Hassanin et al. [93] reported similar find-
ings, attributing the decrease in thyroid hormone production by
follicular cells to increased OS and ROS created by the conversion
of potassium dichromate to its trivalent form. However, Mahmood
et al. [94] reported that the decrease in T3 and T4 was due to an
active combination of chromium and globulins. This, in turn, ham-
pered thyroglobulin proteolysis. In comparison to the untreated
group (group II), the mean values of T3 and T4 were significantly
higher and the mean value of TSH was significantly lower in the
hypothyroidism AgNPs-treated group (group III) due to the capac-
ity of metal nanoparticles to directly target the damaged organ,
thereby decreasing unwanted effects, a better improvement in thy-
roid function with AgNPs was predicted. In accordance with Kal-
ishwaralal et al. [95], it has distinct physical and chemical
properties and is used in a variety of applications, such as antibac-
terial and drug delivery systems.

The results of serum T. and F. testosterone levels revealed a
highly significant decrease in the untreated hypothyroidism group
when compared to the mean values in the normal control group.
However, there are no significant differences in serum T. testos-
terone levels between the hypothyroidism-treated group and the
untreated group as compared to the mean values in the untreated
group. On the other hand, the F. testosterone level in the
hypothyroidism-treated group was significantly elevated as com-
pared to the hypothyroidism-untreated group.

Liver and kidney function tests, including serum (ALT, AST,
Albumin, Urea, Creatinine and Uric acid), are illustrated in Table 2.
According to the one-way ANOVA test, the represented data of ALT
and AST activity as well as albumin level showed highly significant
differences at (P<0.001) in comparison between all groups of the
animal model, including treated and untreated groups. The results
of ALT activity showed a significant increase in positive control
group (GII) induced hypothyroidism by potassium dichromate
when compared to the mean values in normal rats (GI: Negative
control). Nevertheless, ALT activity in the positive treated group
(GIII: Hypothyroidism-treated group) Rats induced Hypothy-
roidism by potassium dichromate followed by administration of
silver oxide nanoparticles (AgNPs) showed a highly significant
Table 2
Effect of AgNPs on liver and kidney functions in rats subjected to Hypothyrodism.

Experimental groups Liver Function Tests

ALT (IU/mL) AST (IU/mL) Alb

Group I: (Normal) 48.4 ± 3.3b 19.5 ± 1.4c 4
Group II: (Hypothyroidism) 104.3 ± 3.3a 110.4 ± 6.1a 3
Group III: (Hypothyroidism + AgNPs) 49.9 ± 1.9b 57.8 ± 7.3b 3

Mean value represents mean of 8 records ± SE. Means with dissimilar superscript letter

20
decrease when compared to the mean values in the positive con-
trol (GII: Hypothyroidism-untreated group). Moreover, AST activity
showed a significant increase in the positive untreated group when
compared to the mean values in the negative control. While AST
activity showed a significant decrease in positive treated group
as compared to the mean values in Positive untreated group. How-
ever, serum albumin levels indicated a significant decrease in pos-
itive untreated group when compared to the mean values in the
negative control. Though albumin levels were significantly
increased in the positive treated group as compared to the positive
untreated group.

The results of serum urea levels in the positive control group
revealed a highly significant increase (P < 0.001) as compared to
the mean corresponding values in the negative control. However,
urea levels showed a significant decrease (P < 0.01) in the positive
treated group as compared to the mean values in the positive
untreated group. Furthermore, serum creatinine levels in the pos-
itive control group revealed a significant increase (P < 0.05) in
the positive control group when compared to the mean corre-
sponding values in the negative control. However, creatinine levels
showed no significant differences in positive treated group when
compared to the mean values in the positive untreated group. On
the other hand, there are no significant differences in Uric acid
level in comparison between all experimental groups of animals.

4. Conclusions

R. oryzae was used in the current study to biosynthesize AgNPs
through ecofriendly method. Results indicated that biosynthesized
AgNPs whose diameter ranged from 17 to 35 nm and were spher-
ical in shape. Besides, biosynthesized AgNPs have the therapeutic
potential to raise thyroid hormone levels and attenuate its compli-
cations, which can be further evaluated by thyroid hormone defi-
ciency in animal model-induced hypothyroidism. We believe that
nanomaterials would dramatically promote the development of
medicine, and silver nanoparticles are expected to have more
exciting influences in these fields.
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