Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.)
Reprint PDF

Keywords

winter wheat
DH lines
androgenesis
SSD technique
segregation distortion
HMW glutenin subunits

How to Cite

1.
Adamski T, Krystkowiak K, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Ponitka A, Surma M, Ślusarkiewicz-Jarzina A. Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.). Electron. J. Biotechnol. [Internet]. 2014 Jan. 14 [cited 2024 Sep. 19];17(1). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2013.12.002

Abstract

Background: The quality of wheat grain depends on several characteristics, among which the composition of high molecular weight glutenin subunits, encoded by Glu-1 loci, are the most important. Application of biotechnological tools to accelerate the attainment of homozygous lines may influence the proportion of segregated genotypes. The objective was to determine, whether the selection pressure generated by the methods based on in vitro cultures, may cause a loss of genotypes with desirable Glu-1 alleles.

Results: Homozygous lines were derived from six winter wheat crosses by pollination with maize (DH-MP), anther culture (DH-AC) and single seed descent (SSD) technique. Androgenetically-derived plants that originated from the same callus were examined before chromosome doubling using allele-specific and microsatellite markers. It was found that segregation distortion in SSD and DH-MP populations occurred only in one case, whereas in anther-derived lines they were observed in five out of six analyzed combinations.

Conclusions: Segregation distortion in DH-AC populations was caused by the development of more than one plant of the same genotype from one callus. This distortion was minimized if only one plant per callus was included in the population. Selection of haploid wheat plants before chromosome doubling based on allele-specific markers allows to choose genotypes that possess desirable Glu-1 alleles and to reduce the number of plants in the next steps of DH production. The SSD technique appeared to be the most advantageous in terms of Mendelian segregation, thus the occurrence of residual heterozygosity can be minimized by continuous selfing beyond the F6 generation.

© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.

Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.