Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress
Reprint PDF

Keywords

Banana (Musa acuminata L. AAA group
cv. ‘Dwarf Cavendish’)
expression patterns
MaASR1
salt stress.

How to Cite

1.
Miao H, Wang Y, Liu J, Jia C, Hu W, Sun P, Jin Z, Xu B. Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Electron. J. Biotechnol. [Internet]. 2014 Nov. 18 [cited 2024 Sep. 19];17(6). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2014.09.002

Abstract

Background: Abscisic acid (ABA)-, stress- and ripening-induced protein (ASR) is plant-specific hydrophilic transcriptional regulators involved in sucrose stress and wounding in banana. However, it is not known whether banana ASR genes confer salt stress tolerance. The contexts of the study was to analysis the sequence characterization of banana ASR1, and identify its expression patterns and function under salt stress using quantitative real-time PCR (qPCR) and overexpression in Arabidopsis. The purpose was to evaluate the role of banana ASR1 to salt stress tolerance employed by plants.

 

Results: A full-length cDNA isolated from banana fruit was named MaASR1, and it had a 432 bp open reading frame (ORF) encoding 143 amino acids. MaASR1 was preferential expression in roots and leaves compared to low expression in fruits, rhizomes and flowers. Under salt stress, the expression of MaASR1 quickly increased and highest expression level was detected in roots and leaves at 4 h, and then gradually decreased. These results suggested that MaASR1 expression was induced under salt stress. MaASR1 protein was localized in the nucleus and plasma membrane. MaASR1 was transformed to Arabidopsis and verified by Southern and northern analysis, transgenic lines L14 and L38 integrated one and two copies of MaASR1, respectively, while overexpression in transgenic lines provided evidence for the role of MaASR1 to salt stress tolerance.

Conclusions: This study demonstrated that overexpression of MaASR1 in Arabidopsis confers salt stress tolerance by reducing the expression of ABA/stress-responsive genes, but does not affect the expression of the ABA-independent pathway and biosynthesis pathway genes.
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.