Early bacterial biofilm colonisers in the coastal waters of Mauritius
PDF

Keywords

bacterial adhesion
Biofouling
Cell motility
cell motility
coastal waters
Functional metagenomics
Identification bacterial communities
metatranscriptomic
Next-generation sequencing technologies
Proteobacteria
Quorum sensing

How to Cite

1.
Rampadarath S, Bandhoa K, Puchooa D, Jeewon R, Bal S. Early bacterial biofilm colonisers in the coastal waters of Mauritius. Electron. J. Biotechnol. [Internet]. 2017 Oct. 17 [cited 2024 Sep. 19];29(1). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2017.06.006

Abstract

Background: The past years have witnessed a growing number of researches in biofilm forming communities due to their environmental and maritime industrial implications. To gain a better understanding of the early bacterial biofilm community, microfiber nets were used as artificial substrates and incubated for a period of 24 h in Mauritian coastal waters. Next-generation sequencing technologies were employed as a tool for identification of early bacterial communities. Different genes associated with quorum sensing and cell motility were further investigated.

Results: Proteobacteria were identified as the predominant bacterial microorganisms in the biofilm within the 24 h incubation, of which members affiliated to Gammaproteobacteria, Alphaproteobacteria and Betaproteobacteria were among the most abundant classes. The biofilm community patterns were also driven by phyla such as Firmicutes, Bacteroidetes, Chloroflexi, Actinobacteria and Verrucomicrobia. The functional analysis based on KEGG classification indicated high activities in carbohydrate, lipid and amino acids metabolism. Different genes encoding for luxI, lasI, agrC, flhA, cheA and cheB showed the involvement of microbial members in quorum sensing and cell motility.

Conclusion: This study provides both an insight on the early bacterial biofilm forming community and the genes involved in quorum sensing and bacterial cell motility.



PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.