Evaluation of alkali and thermotolerant lipase from an indigenous isolated Bacillus strain for detergent formulation
PDF

Keywords

Activity
Bacillus subtilis
Environment pollution
Fabric
Gras
Lipolytic activity
Oil
Removal
Surfactant
Thermotolerant

How to Cite

1.
Saraswat R, Verma V, Sistla S, Bhushan I. Evaluation of alkali and thermotolerant lipase from an indigenous isolated Bacillus strain for detergent formulation. Electron. J. Biotechnol. [Internet]. 2017 Nov. 23 [cited 2024 Sep. 20];30(1). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2017.08.007

Abstract

Background: Lipases are used in detergent industries to minimise the use of phosphate-based chemicals in detergent formulations. The use of lipase in household laundry reduces environmental pollution and enhances the ability of detergent to remove tough oil or grease stains.

Results: A lipase-producing indigenous Bacillus subtilis strain [accession no. KT985358] was isolated from the foothills of Trikuta mountain in Jammu and Kashmir, India. The lipase (BSK-L) produced by this strain expressed alkali and thermotolerance. Lipase has an optimal activity at pH 8.0 and temperature 37°C, whereas it is stable at pH 6.0–9.0 and showed active lipolytic activity at temperatures 30 to 60°C. Furthermore, lipase activity was found to be stimulated in the presence of the metal ions Mn2+, K+, Zn2+, Fe2+ and Ca2+. This lipase was resistant to surfactants, oxidising agents and commercial detergents, suggesting it as a potential candidate for detergent formulation. BSK-L displayed noticeable capability to remove oil stains when used in different washing solutions containing buffer, lipase and commercial detergent. The maximum olive oil removal percentage obtained was 68% when the optimum detergent concentration (Fena) was 0.3%. The oil removal percentage from olive oil-soiled cotton fabric increased with 40 U/mL of lipase.

Conclusions: This BSK-L enzyme has the potential for removing oil stains by developing a pre-soaked solution for detergent formulation and was compatible with surfactants, oxidising agents and commercial detergents.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.