Enhanced alkaline catalase production by Serratia marcescens FZSF01: Enzyme purification, characterization, and recombinant expression
PDF

Keywords

Alkaline
Catalase activity
Catalase assay
Catalase gene
Catalase producing strains
Catalase purification
Catalase
Fermentation
Hydrogen peroxide
Ultrasonication

How to Cite

1.
Jia X, Lin X, Lin C, Lin L, Chen J. Enhanced alkaline catalase production by Serratia marcescens FZSF01: Enzyme purification, characterization, and recombinant expression. Electron. J. Biotechnol. [Internet]. 2017 Nov. 23 [cited 2024 Sep. 20];30(1). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2017.10.001

Abstract

Background: Catalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized.

Results: After optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20–70°C and pH 5.0–11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC–MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2,037 U/ml.

Conclusions: To our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.