Fermentation optimization and enzyme characterization of a new ι-Carrageenase from Pseudoalteromonas carrageenovora ASY5
Reprint PDF

Keywords

Disaccharides
Electrospray ionization mass spectrometry
(ESI-MS)
Enzyme properties
Fermentation optimization
Galactans
Pseudoalteromonas carrageenovora
Sulfated linear polysaccharides
Tetrasaccharides

How to Cite

1.
Xiao Q, Zhu Y, Li J, Wu C, Ni H, Xiao A. Fermentation optimization and enzyme characterization of a new ι-Carrageenase from Pseudoalteromonas carrageenovora ASY5. Electron. J. Biotechnol. [Internet]. 2018 Mar. 12 [cited 2024 Sep. 20];32. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2017.12.005

Abstract

Background: A new ι-carrageenase-producing strain was screened from mangroves and authenticated as Pseudoalteromonas carrageenovora ASY5 in our laboratory. The potential application of this new strain was evaluated.

Results: Medium compositions and culturing conditions in shaking flask fermentation were firstly optimized by single-factor experiment. ι-Carrageenase activity increased from 0.34 U/mL to 1.08 U/mL after test optimization. Optimal fermentation conditions were 20°C, pH 7.0, incubation time of 40 h, 15 g/L NaCl, 1.5% (w/v) yeast extract as nitrogen source, and 0.9% (w/v) ι-carrageenan as carbon source. Then, the crude ι-carrageenase was characterized. The optimum temperature and pH of the ι-carrageenase were 40°C and 8.0, respectively. The enzymatic activity at 35-40°C for 45 min retained more than 40% of the maximum activity. Meanwhile, The ι-carrageenase was inhibited by the addition of 1 mmol/L Cd2+ and Fe3+ but increased by the addition of 1 mmol/L Ag+, Ba2+, Ca2+, Co2+, Mn2+, Zn2+, Fe2+, and Al3+. The structure of oligosaccharides derived from ι-carrageenan was detected using electrospray ionization mass spectrometry (ESI-MS). The ι-carrageenase degraded ι-carrageenan, yielding disaccharides and tetrasaccharides as main products.

Conclusions: The discovery and study of new ι-carrageenases are beneficial not only for the production of ι-carrageenan oligosaccharides but also for the further utilization in industrial production.

Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.