Agroindustrial biomass for xylanase production by Penicillium chrysogenum: Purification, biochemical properties and hydrolysis of hemicelluloses
Reprint PDF

Keywords

Agroindustrial biomass
Enzyme production
Hemicellulose hydrolysis
Hemicelluloses
Penicillium chrysogenum
pH stability
Sugar cane bagasse
Thermal stability
Xylanase production
Xylanolytic enzyme

How to Cite

1.
Cabral Terrone C, de Freitas C, Fanchini Terrasan CR, de Almeida AF, Cano Carmona E. Agroindustrial biomass for xylanase production by Penicillium chrysogenum: Purification, biochemical properties and hydrolysis of hemicelluloses. Electron. J. Biotechnol. [Internet]. 2018 May 11 [cited 2024 Sep. 20];33. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2018.04.001

Abstract

Background: In this work, the xylanase production by Penicillium chrysogenum F-15 strain was investigated using agroindustrial biomass as substrate. The xylanase was purified, characterized and applied in hemicellulose hydrolysis.

Results: The highest xylanase production was obtained when cultivation was carried out with sugar cane bagasse as carbon source, at pH 6.0 and 20°C, under static condition for 8 d. The enzyme was purified by a sequence of ion exchange and size exclusion chromatography, presenting final specific activity of 834.2 U·mg·prot-1. The molecular mass of the purified enzyme estimated by SDS-PAGE was 22.1 kDa. The optimum activity was at pH 6.5 and 45°C. The enzyme was stable at 40°C with half-life of 35 min, and in the pH range from 4.5 to 10.0. The activity was increased in the presence of Mg+2 and Mn+2 and reducing agents such as DTT and β- mercaptoethanol, but it was reduced by Cu+2 and Pb+2. The xylanase presented Km of 2.3 mM and Vmax of 731.8 U·mg·prot-1 with birchwood xylan as substrate. This xylanase presented differences in its properties when it was compared to the xylanases from other P. chrysogenum strains.

Conclusion: The xylanase from P. chrysogenum F-15 showed lower enzymatic activity on commercial xylan than on hemicellulose from agroindustry biomass and its biochemistry characteristics, such as stability at 40°C and pH from 4.0 to 10.0, shows the p
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.