Transcriptome and proteome analyses of resistant preharvest peanut seed coat in response to Aspergillus flavus infection
Reprint PDF

Keywords

Aflatoxins
Arachis hypogaea
Aspergillus flavus
Chitinase
Hevamine-A
Peanut genome
Proteome
RNA-seq
TMT
Transcriptome

How to Cite

1.
Zhao X, Li C, Yan C, Wang J, Yuan C, Zhang H, Shan S. Transcriptome and proteome analyses of resistant preharvest peanut seed coat in response to Aspergillus flavus infection. Electron. J. Biotechnol. [Internet]. 2019 May 8 [cited 2024 Sep. 20];39. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2019.03.003

Abstract

Background: The infection of peanut (Arachis hypogaea L.) seed coat by the pathogenic fungus Aspergillus flavus has highly negative economic and health impacts. However, the molecular mechanism underlying such defense response remains poorly understood. This study aims to address this issue by profiling the transcriptomic and proteomic changes that occur during the infection of the resistant peanut cultivar J11 by A. flavus.

Results: Transcriptomic study led to the detection of 13,539 genes, among which 663 exhibited differential expression. Further functional analysis found the differentially expressed genes to encode a wide range of pathogenesis- and/or defense-related proteins such as transcription factors, pathogenesis-related proteins, and chitinases. Changes in the expression patterns of these genes might contribute to peanut resistance to A. flavus. On the other hand, the proteomic profiling showed that 314 of the 1382 detected protein candidates were aberrantly expressed as a result of A. flavus invasion. However, the correlation between the transcriptomic and proteomic data was poor. We further demonstrated by in vitro fungistasis tests that hevamine-A, which was enriched at both transcript and protein levels, could directly inhibit the growth of A. flavus.

Conclusions: The results demonstrate the power of complementary transcriptomic and proteomic analyses in the study of pathogen defense and resistance in plants and the chitinase could play an important role in the defense response of peanut to A. flavus. The current study also constitutes the first step toward building an integrated omics data platform for the development of Aspergillus-resistant peanut cultivars.

Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.