Ellagic acid production using polyphenols from orange peel waste by submerged fermentation
PDF

Keywords

Aspergillus fumigatus
Bioactive compounds
Catechin
Ellagic acid
Ellagitannins
Flavonoids
Gallotannins
Orange peel waste
Polyphenols
Quercetin
Submerged fermentation

How to Cite

1.
Sepúlveda L, Laredo-Alcalá E, Buenrostro-Figueroa JJ, Ascacio-Valdés JA, Genisheva Z, Aguilar C, Teixeira J. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electron. J. Biotechnol. [Internet]. 2020 Jan. 22 [cited 2024 Sep. 19];43. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2019.11.002

Abstract

Background: Biotechnological processes are part of modern industry as well as stricter environmental requirements. The need to reduce production costs and pollution demands for alternatives that involve the integral use of agro-industrial waste to produce bioactive compounds. The citrus industry generates large amounts of wastes due to the destruction of the fruits by microorganisms and insects together with the large amounts of orange waste generated during the production of juice and for sale fresh. The aim of this study was used orange wastes rich in polyphenolic compounds can be used as source carbon of Aspergillus fumigatus MUM 1603 to generate high added value compounds, for example, ellagic acid and other molecules of polyphenolic origin through submerged fermentation system.

Results: The orange peel waste had a high concentration of polyphenols, 28% being condensed, 27% ellagitannins, 25% flavonoids and 20% gallotannins. The major polyphenolic compounds were catechin, EA and quercetin. The conditions, using an experimental design of central compounds, that allow the production of the maximum concentration of EA (18.68 mg/g) were found to be: temperature 30°C, inoculum 2 × 107 (spores/g) and orange peel polyphenols 6.2 (g/L).

Conclusion: The submerged fermentation process is an effective methodology for the biotransformation of molecules present in orange waste to obtain high value-added as ellagic acid that can be used as powerful antioxidants, antibacterial and other applications.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.