Transient expression of a green fluorescent protein in tobacco and maize chloroplast
PDF

Keywords

Chloroplast genome
Chloroplast transformation
Green fluorescent protein
Maize
mgfp5 gene
Plastid transformation
Recalcitrant crops improvement
Tobacco
Transgenes
Transient expression
Zea mays

How to Cite

1.
Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, Siqueiros-Cendón TS, Iglesias-Figueroa BF, Espinoza-Sánchez EA, Aguado-Santacruz GA, Rascón-Cruz Q. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron. J. Biotechnol. [Internet]. 2020 Aug. 17 [cited 2024 Sep. 19];45. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2020.01.008

Abstract

Background: Maize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.

 

Results: In this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression-an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.

 

Conclusions: This paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.