Defensin γ-thionin from Capsicum chinense improves butyrate cytotoxicity on human colon adenocarcinoma cell line Caco-2
PDF

Keywords

Adenocarcinoma
Apoptosis
Butyrate cytotoxicity
Butyrate
Capsicum chinense
Cell cycle
Colon cancer
Defensins
Plant antimicrobial peptides
Reactive oxygen species

How to Cite

1.
Velázquez-Hernández ME, Ochoa-Zarzosa A, López-Meza JE. Defensin γ-thionin from Capsicum chinense improves butyrate cytotoxicity on human colon adenocarcinoma cell line Caco-2. Electron. J. Biotechnol. [Internet]. 2021 Jul. 6 [cited 2024 Sep. 19];52. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2021.04.009

Abstract

Background: Butyrate is a histone deacetylase inhibitor that induces apoptosis and inhibits cell proliferation of colorectal cancer cells. To improve its anticancer activity, butyrate has been evaluated mixed with drugs and different molecules. Plant antimicrobial peptides are attractive anticancer alternative molecules because they show selective cytotoxic activity against different cancer cell lines. In this work, we explore if the plant defensin γ-thionin (Capsicum chinense) can improve butyrate activity on Caco-2 cell line and we also determined the mechanism of death activated.

Results: The combined treatment of γ-thionin (3.5 µM) and butyrate (50 mM) showed higher cytotoxicity on Caco-2 cells with respect to single treatments. Also, the combined treatment reduced cell proliferation and exhibited a higher rate of apoptosis than single treatments. Combined treatment induced caspases 8 and 9 activation to an extent comparable with that of butyrate while γ-thionin did not activate caspases. Additionally, reactive oxygen species generation preceded the onset of apoptosis, and superoxide anion production was higher in cells treated with the combined treatment.

Conclusions: The γ-thionin from Habanero chili pepper improved the butyrate cytotoxicity on Caco-2 cells. This effect occurred through apoptosis induction associated with reactive oxygen species production. Therefore, the combination of butyrate with cytotoxic antimicrobial peptides could be an attractive strategy for cancer therapy.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.