Therapeutic evaluation of galangin on cartilage protection and analgesic activity in a rat model of osteoarthritis
PDF

Keywords

Analgesic
Antioxidant
Arthritis
Cartilage
Galangin
Osteoarthritis
Protection
Rats
Therapeutic evaluation
Type II collagen

How to Cite

1.
Su Y, Shen L, Xue J, Zou J, Wan D, Shi Z. Therapeutic evaluation of galangin on cartilage protection and analgesic activity in a rat model of osteoarthritis. Electron. J. Biotechnol. [Internet]. 2021 Sep. 10 [cited 2024 Sep. 20];53. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2021.05.005

Abstract

Background: Osteoarthritis (OA) is a form of arthritis due to degradation of articular cartilage. OA is associated with stiffness, joint pain, and dysfunction, affecting adults worldwide. Galangin is a bioactive flavonoid that exerts several therapeutic and biological activities. Anti-hyperglycemic, anti-inflammatory, anti-cancer, and anti-apoptotic activities of galangin have been reported in several studies. In the present study, rats were divided into normal control, OA (control), galangin 10 mg/kg (low-dose), galangin 100 mg/kg (high-dose), and celecoxib 30 mg/kg (positive control) groups. All doses were administered orally for 14 consecutive days. The urinary type II collagen (µCTX-II) level as well as reactive oxygen species, tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, superoxide dismutase, catalase, lipid peroxidation, reduced glutathione, and glutathione peroxidase levels were measured. In addition, the CTX-II mRNA and protein expression levels were measured.

Results: Galangin supplementation significantly reduced the µCTX-II level compared with controls. Galangin treatment significantly reduced reactive oxygen species, lipid peroxidation, interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha levels, but increased catalase, superoxide dismutase, glutathione peroxidase, and reduced glutathione levels. Galangin treatment significantly reduced the CTX-II mRNA and protein expression levels. The low CTX-II level in tissue indicated the inhibition of cartilage degradation.

Conclusions: In summary, supplementation with galangin was effective against OA. The identification of potential therapeutic agents that inhibit inflammation may be useful for the management and prevention of OA.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.