A case study of a profitable mid-tech greenhouse for the sustainable production of tomato, using a biofertilizer and a biofungicide
PDF

Keywords

Agriculture
Biocontrol
Biofertilizer
Biofungicide
Greenhouse
Healthy vegetables
Middle-income countries
Pesticide reduction
Protected agriculture
Sustainable agriculture
Tomato

How to Cite

1.
Serrano-Carreón L, Aranda-Ocampo S, Balderas-Ruíz KA, Juárez AM, Leyva E, Trujillo-Roldán MA, Valdez-Cruz NA, Galindo E. A case study of a profitable mid-tech greenhouse for the sustainable production of tomato, using a biofertilizer and a biofungicide. Electron. J. Biotechnol. [Internet]. 2022 Sep. 15 [cited 2024 Sep. 6];59. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2022.06.003

Abstract

Background: Protected agriculture (PA) is an alternative allowing the control of environmental variables to produce healthy vegetables. Biofertilizers and biofungicides can reduce the chemical load of pesticides. There is abundant literature documenting individual aspects, such as control of environmental variables, irrigation, biological control, and cost assessments. However, there are no reports documenting integral approaches in which variables are considered altogether in a successful case study of mid-tech technology, suitable in middle-income countries like México. We tested if mid-tech greenhouses using biocontrol and biofertilization can increase profits, using tomato as a model system. This work provides considerations about middle-income countries’ agriculture and the need for a multidisciplinary approach to offer cost-effective, sustainable alternatives to producers.

Results: This technology yielded up to 254 tons/ha·year of tomato, achieving reductions of 44–60% in water consumption, 25% in chemical nitrogen-fertilization, and 28% in the cost unit of production, increasing the profits by ∼45% in relation to Mexican conventional greenhouses management.

Conclusions: This case study has shown that it is possible to significantly increase profits in mid-tech greenhouse tomato production by increasing productivity and crop quality and decreasing the use of water and agrochemicals through greenhouse automatization, crop management, and beneficial bacteria applied to crops.

This manuscript includes a video, supplementary to the main contributions of the project. Please visit this URL: https://youtu.be/uRBGgJqfkLE.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.