Reverse osmosis membranes applied in seawater desalination plants as a source of bacteria with antifouling activity: Isolation, biochemical and molecular characterization

Graphical abstract

Reverse osmosis membranes as a source of bacteria with antifouling activity
PDF
HTML

Keywords

Antibacterial supernatant
Antifouling
Bioactive molecules
Biofilms
Biofouling
Exoenzimatic activity
Exoenzymes
Microfouling
Reverse osmosis membrane
Seawater desalination plants

Categories

How to Cite

1.
Vera-Villalobos H, Cortes-Martinez A, Gonzalez-Gutierrez Álvaro, Zadjelovic V, Riquelme C, Silva-Aciares F. Reverse osmosis membranes applied in seawater desalination plants as a source of bacteria with antifouling activity: Isolation, biochemical and molecular characterization. Electron. J. Biotechnol. [Internet]. 2024 Jan. 26 [cited 2024 Sep. 19];66:75-83. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2023.09.003

Abstract

Background: Ginsenoside Rg1 has been studied to improve systemic inflammatory injury induced by sepsis, but its mechanism is not fully understood. The objective of this study was to explore the potential molecular mechanism by which Rg1 ameliorates septic intestinal barrier function impairment.

Results: Rg1 administration or miR-30e-5p upregulation alleviated LPS-induced apoptosis of Caco2 cells, decreased LDH and inflammatory cytokines levels, enhanced cell proliferation, promoted tight junction protein expression, and inhibited p65 phosphorylation. These beneficial effects of Rg1 were compensated by miR-30e-5p knockdown or FBXO11 overexpression. Animal studies have also yielded consistent results. Mechanistically, Rg1 performed this role by upregulating miR-30e-5p and inhibiting FBXO11 expression.

Conclusions: Rg1 protects intestinal barrier function in sepsis by regulating the miR-30e-5p/FBXO11 axis. These data provide new insights into the development of targeted agents for septic intestinal injury and the understanding of Rg1's therapeutic mechanisms.

https://doi.org/10.1016/j.ejbt.2023.09.003
PDF
HTML

References

Boretti A, Rosa L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019;2:15. https://doi.org/10.1038/s41545-019-0039-9

Schewe J, Heinke J, Gerten D, et al. Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci USA 2014;111(9):3245-3250. https://doi.org/10.1073/pnas.1222460110 PMid: 24344289

Jones E, Qadir M, van Vliet MTH, et al. The state of desalination and brine production: A global outlook. Science of the Total Environment 2019;657:1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076 PMid: 30677901

Wang Y, Zhang R, Duan J, et al. Extracellular polymeric substances and biocorrosion/biofouling: recent advances and future perspectives. Int J Mol Sci 2022;23(10):5566. https://doi.org/10.3390/ijms23105566 PMid: 35628373

Qian PY, Cheng A, Wang R, et al. Marine biofilms: Diversity, interactions and biofouling. Nat Rev Microbiol 2022;20:671-684. https://doi.org/10.1038/s41579-022-00744-7 PMid: 35614346

Hibbing ME, Fuqua C, Parsek MR, et al. Bacterial competition: Surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010;8:15-25. https://doi.org/10.1038/nrmicro2259 PMid: 19946288

Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling 2013;29(4):423-441. https://doi.org/10.1080/08927014.2013.776042 PMid: 23574279

Nagaraj V, Skillman L, Li D, et al. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant. Lett Appl Microbiol 2017;65(1):73-81. https://doi.org/10.1111/lam.12747 PMid: 28418590

Dobretsov S, Dahms HU, Qian PY. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 2006;22(1):43-54. https://doi.org/10.1080/08927010500504784 PMid: 16551560

Vera-Villalobos H, Pérez V, Contreras F, et al. Characterization and removal of biofouling from reverse osmosis membranes (ROMs) from a desalination plant in Northern Chile, using Alteromonas sp. Ni1-LEM supernatant. Biofouling 2020;36(5):505-515. https://doi.org/10.1080/08927014.2020.1776268 PMid: 32545993

Avendaño-Herrera RE, Riquelme CE, Silva F. Utilización de biopelículas bacterianas en el asentamiento de larvas de Argopecten purpuratus (Lamarck 1819) en un hatchery comercial. Rev Biol Mar Oceanogr 2002;37(1):35-41. https://doi.org/10.4067/S0718-19572002000100006

Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 1957;23:15-22. https://doi.org/10.1007/BF02545855 PMid: 13425509

Jeffries CD, Holtman DF, Guse DG. Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 1957;73:590-591. https://doi.org/10.1128/jb.73.4.590-591.1957 PMid: 13428699

Kasana RC, Salwan R, Dhar H, et al. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 2008;57:503-507. https://doi.org/10.1007/s00284-008-9276-8 PMid: 18810533

Zhang X, Shuai Y, Tao H, et al. Novel method for the quantitative analysis of protease activity: The casein plate method and its applications. ACS Omega 2021;6(5):3675-3680. https://doi.org/10.1021/acsomega.0c05192 PMid: 33585747

Chauhan PS, Saxena A. Bacterial carrageenases: An overview of production and biotechnological applications. 3 Biotech 2016;6:146. https://doi.org/10.1007/s13205-016-0461-3 PMid: 28330218

Gacesa P, Wusteman FS. Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Appl Environ Microbiol 1990;56(7):2265-2267. https://doi.org/10.1128/aem.56.7.2265-2267.1990 PMid: 16348243

Rédei GP. M9 Bacterial Minimal Medium. In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics, Springer, Dordrecht. 2008, p. 1135. https://doi.org/10.1007/978-1-4020-6754-9_9692

Howe E, Holton K, Nair S, et al. MeV: MultiExperiment viewer. In: Ochs M, Casagrande J, Davuluri R. (eds). Biomedical Informatics for Cancer Research. Springer, Boston, MA., 2010:267-277. https://doi.org/10.1007/978-1-4419-5714-6_15

Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith, W.L., Chanley, M.H. (eds) Culture of Marine Invertebrate Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8714-9_3

Wade W. Unculturable Bacteria—The Uncharacterized organisms that cause oral infections. J R Soc Med 2002;95(2):81-83. https://doi.org/10.1177/014107680209500207 PMid: 11823550

Infante CD, Castillo F, Pérez V, et al. Inhibition of Nitzschia ovalis biofilm settlement by a bacterial bioactive compound through alteration of EPS and epiphytic bacteria. Electronic Journal of Biotechnology 2018;33:1-10. https://doi.org/10.1016/j.ejbt.2018.03.002

Al-Abri M, Kyaw HH, Al-Ghafri B, et al. Autopsy of used reverse osmosis membranes from the largest seawater desalination plant in Oman. Membranes 2022;12(7):671. https://doi.org/10.3390/membranes12070671 PMid: 35877874

Nagaraj V, Skillman L, Li D, et al. Culturable bacteria from a full-scale desalination plant: Identification methods, bacterial diversity and selection of models based on membrane-biofilm community. Desalination 2019;457:103-114. https://doi.org/10.1016/j.desal.2019.01.028

Bereschenko LA, Stams AJM, Heilig GHJ, et al. Investigation of microbial communities on reverse osmosis membranes used for process water production. Water Science and Technology, 2007;55(8-9):181-190. https://doi.org/10.2166/wst.2007.257 PMid: 17546985

Vitzilaiou E, Stoica IM, Knøchel S. Microbial biofilm communities on Reverse Osmosis membranes in whey water processing before and after cleaning. J Memb Sci 2019;587:117174. https://doi.org/10.1016/j.memsci.2019.117174

Kafarski P, Lejczak B. Application of bacteria and fungi as biocatalysts for the preparation of optically active hydroxyphosphonates. J Mol Catal B Enzym, 2004;29(1-6):99-104. https://doi.org/10.1016/j.molcatb.2003.12.013

Jonkers HM, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 2010;36(2):230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036

Oh HS, Tan CH, Low JH, et al. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. Water Res 2017;112:29-37. https://doi.org/10.1016/j.watres.2017.01.028 PMid: 28129553

Abdulrahman I, Jamal MT, Pugazhendi A, et al. Antibiofilm activity of secondary metabolites from bacterial endophytes of Red Sea soft corals. Int Biodeterior Biodegradation 2022;173:105462. https://doi.org/10.1016/j.ibiod.2022.105462

Huang S, Xu B, Ng TCA, et al. Feasibility of implementing quorum quenching technology to mitigate membrane fouling in MBRs treating phenol-rich pharmaceutical wastewater: Application of Rhodococcus sp. BH4 and quorum quenching consortium. Bioresour Technol 2022;358:127389. https://doi.org/10.1016/j.biortech.2022.127389 PMid: 35636678

Bachosz K, Vu MT, Nghiem LD, et al. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review. Environ Technol Innov 2022;25:102106. https://doi.org/10.1016/j.eti.2021.102106

Barzkar N, Sheng R, Sohail M, et al. Alginate lyases from marine bacteria: An enzyme ocean for sustainable future. Molecules 2022;27(11):3375. https://doi.org/10.3390/molecules27113375 PMid: 35684316

Srinivasan R, Santhakumari S, Poonguzhali P, et al. Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol 2021;12:676458. https://doi.org/10.3389/fmicb.2021.676458 PMid: 34054785

Kiran GS, Lipton AN, Kennedy J, et al. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioeng Bugs 2014;5(5):305-318. https://doi.org/10.4161/bioe.29898 PMid: 25482232

Sharma K, Singh AP. Antibiofilm effect of DNase against single and mixed species biofilm. Foods 2018;7(3):42. https://doi.org/10.3390/foods7030042 PMid: 29562719

Abdelgalil SA, Soliman NA, Abo-Zaid GA, et al. Biovalorization of raw agro-industrial waste through a bioprocess development platform for boosting alkaline phosphatase production by Lysinibacillus sp. strain APSO. Sci Rep 2021;11:17564. https://doi.org/10.1038/s41598-021-96563-6 PMid: 34475429

Kour D, Rana Kl, Kaur T, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 2021;31(1):43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

Aykin E, Omuzbuken B, Kacar A. Microfouling bacteria and the use of enzymes in eco-friendly antifouling technology. J Coat Technol Res 2019;16:847-856. https://doi.org/10.1007/s11998-018-00161-7

Barnes RJ, Bandi RR, Chua F, et al. The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal. J Memb Sci 2014;466:161-172. https://doi.org/10.1016/j.memsci.2014.04.046

Cloete WJ, Adriaanse C, Swart P, et al. Facile immobilization of enzymes on electrospun poly(styrene-alt-maleic anhydride) nanofibres. Polym Chem 2011;2(7):1479-1481. https://doi.org/10.1039/c1py00069a

Gule NP, Begum NM, Klumperman B. Advances in biofouling mitigation: A review. Crit Rev Environ Sci Technol 2016;46(6):535-555. https://doi.org/10.1080/10643389.2015.1114444

Vera-Villalobos H, Riquelme C, Silva-Aciares F. Use of Alteromonas sp. Ni1-LEM supernatant as a cleaning agent for Reverse-Osmosis Membranes (ROMs) from a desalination plant in Northern Chile affected by biofouling. Membranes 2023;13(5):454. https://doi.org/10.3390/membranes13050454 PMid: 37233515

Kim J, Kim KH. Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry 2017;57:64-71. https://doi.org/10.1016/j.procbio.2017.04.003

Rugbjerg P, Feist AM, Sommer MOA. Enhanced metabolite productivity of Escherichia coli adapted to glucose M9 minimal medium. Front Bioeng Biotechnol 2018;6:166. https://doi.org/10.3389/fbioe.2018.00166 PMid: 30483499

Saggu SK, Jha G, Mishra PC. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front Bioeng Biotechnol 2019;7:192. https://doi.org/10.3389/fbioe.2019.00192 PMid: 31448272

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Electronic Journal of Biotechnology