Gene expression and characterization of 2-keto-3-deoxy-gluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of Serratia marcescens KCTC 2172
Full Text
Reprint PDF

Keywords

2-keto-3-deoxygluconate kinase
carbohydrate kinase
purification
Serratia marcescens KCTC 2172

How to Cite

1.
Lee Y-S, Park I-H, Yoo J-S, Kim H-S, Chung S-Y, Chandra MRG, Choi Y-L. Gene expression and characterization of 2-keto-3-deoxy-gluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of Serratia marcescens KCTC 2172. Electron. J. Biotechnol. [Internet]. 2009 Jul. 15 [cited 2024 Jul. 12];12(3):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v12n3-14

Abstract

We cloned 2-keto-3-deoxy-gluconate kinase (KDGK), which catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to 2-keto-3-deoxy-6-phophogluconate (KDPG) from Serratia marcescens KCTC 2172. The nucleotide sequence revealed a single open reading frame containing 1,208 bp and encoding for 309 amino acids, with a molecular weight of 33,993 Da. The enzyme was purified via GST affinity chromatography. The putative KdgT binding site was detected upstream of the initial codon. The KDG kinase utilized 2-ketogluconate (KG) and KDG as substrates. The optimal temperature and pH for KDGK activity were 50ºC and 8.0, respectively.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.