The applicability of the API 20E and API Rapid NFT systems for the identification of bacteria from activated sludge
Full Text
Reprint PDF

Keywords

API 20E system
API Rapid NFT system
SBR
CFSTR

How to Cite

1.
Juang D-F, Morgan JM. The applicability of the API 20E and API Rapid NFT systems for the identification of bacteria from activated sludge. Electron. J. Biotechnol. [Internet]. 2001 Apr. 15 [cited 2024 Sep. 20];4(1):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v4n1-1

Abstract

The purpose of this study was to test the applicability of the API 20E and API Rapid NFT systems for the identification of some predominant gram-negative and gram-positive bacteria isolated from lab-scale activated sludge treatment systems. In this study, one lab-scale sequencing batch reactor (SBR) and one lab-scale continuous-flow stirred tank reactor (CFSTR) were setup. After both reactors had reached equilibrium, many pure cultures isolated from the activated sludge in both systems were obtained and many morphological, biochemical, physiological tests were conducted to identify each pure culture. The API 20E system is a standardized, miniaturized version of conventional procedures for rapid identification of Enterobacteriaceae and other gram-negative bacteria, and the Rapid NFT kit is used for the identification of the gram-negative, non-fermentative bacteria. Also, a Phillips 300 Transmission Electron Microscope and a Phillips 301 Transmission Electron Microscope were applied to further verify the identification of some genera. According to the results of this study, it has been concluded that some commercial products, such as API 20E system and API Rapid NFT system, can be applied for the identification of microorganisms only at the genus level. Many other additional morphological, biochemical, and physiological tests are always needed to obtain the exact identification of each microorganism at the species level. More advanced technologies such as 16S rRNA may be necessary, however, for a rapid identification of the total bacterial population. In this study, it has also been found that Brevibacterium acetylicum and Pseudomonas vesicularis are two of the most dominant species in the activated sludge of CFSTR system. Gram-positive bacteria such as members of the genus Arthrobacter have shown to be very significant and predominant in the SBR system.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.