Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh
Full Text
Reprint PDF

Keywords

bioremediation
2
4-dichlorophenol
immobilized cell bioreactor
laccase
manganese-dependent peroxidase
pentachlorophenol

How to Cite

1.
Sedarati MR, Keshavarz T, Leontievsky AA, Evans CS. Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh. Electron. J. Biotechnol. [Internet]. 2003 Aug. 15 [cited 2024 Sep. 19];6(2):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v6n2-7

Abstract

Free-cell cultures of Trametes versicolor were compared with cultures immobilized on nylon mesh in a 2-litre bioreactor for transformation of pentachlorophenol (PCP) and 2,4-dichlorophenol (2,4-DCP), added at intervals to the liquid culture medium over a period of 816 hrs. Increasing amounts of PCP from 200 ppm to 2000 ppm added batchwise to cultures permitted acclimatization of the fungus to these toxic pollutants. A total addition of 2000 ppm of 2,4-DCP and 3400 ppm PCP were removed from the immobilized cultures with 85% of 2,4-DCP and 70% of PCP transformed by enzymes (laccase and Mn-peroxidase), 5% 2,4-DCP and 28% PCP adsorbed by the biomass and 10% 2,4-DCP and 2% PCP retained in the medium at the termination of the fermentation after 1020 hrs. In contrast free-cell cultures in the same medium with the same addition regime of PCP and 2,4-DCP, transformed 20% 2,4-DCP and 12% PCP by enzyme action, adsorbed 58% 2,4-DCP and 80% PCP by the biomass, and retained 22% 2,4-DCP and 8% PCP in the medium. The use of nylon mesh as an immobilization matrix for removal of PCP and 2,4-DCP facilitates more efficient removal of chlorophenols and can be adapted to scale-up for application of large volumes of chlorophenol-containing aqueous effluents.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.