A novel chlorpyrifos hydrolase CPD from Paracoccus sp. TRP: Molecular cloning, characterization and catalytic mechanism
Reprint PDF

Keywords

Biodegradation
Chlorpyrifos degradation
Chlorpyrifos hydrolysis
Environment
Enzyme purification
Enzyme structure
Esterase
Nucleophilic catalysis
Organophosphate
Persistent pollutants

How to Cite

1.
Fan S, Li K, Yan Y, Wang J, Wang J, Qiao C, Yang T, Jia Y, Zhao B. A novel chlorpyrifos hydrolase CPD from Paracoccus sp. TRP: Molecular cloning, characterization and catalytic mechanism. Electron. J. Biotechnol. [Internet]. 2018 Jan. 9 [cited 2024 Sep. 19];31(1). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2017.10.009

Abstract

Background: Biodegradation is a reliable approach for efficiently eliminating persistent pollutants such as chlorpyrifos. Despite many bacteria or fungi isolated from contaminated environment and capable of degrading chlorpyrifos, limited enzymes responsible for its degradation have been identified, let alone the catalytic mechanism of the enzymes.

Results: In present study, the gene cpd encoding a chlorpyrifos hydrolase was cloned by analysis of genomic sequence of Paracoccus sp. TRP. Phylogenetic analysis and BLAST indicated that CPD was a novel member of organophosphate hydrolases. The purified CPD enzyme, with conserved catalytic triad (Ser155-Asp251-His281) and motif Gly-Asp-Ser-Ala-Gly, was significantly inhibited by PMSF, a serine modifier. Molecular docking between CPD and chlorpyrifos showed that Ser155 was adjacent to chlorpyrifos, which indicated that Ser155 may be the active amino acid involved in chlorpyrifos degradation. This speculation was confirmed by site-directed mutagenesis of Ser155Ala accounting for the decreased activity of CPD towards chlorpyrifos. According to the key role of Ser155 in chlorpyrifos degradation and molecular docking conformation, the nucleophilic catalytic mechanism for chlorpyrifos degradation by CPD was proposed.

Conclusion: The novel enzyme CPD was capable of hydrolyze chlorpyrifos and Ser155 played key role during degradation of chlorpyrifos.


Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.