Characterization of a thermostable extracellular tannase produced under submerged fermentation by Aspergillus ochraceus
Full Text
Reprint PDF

Keywords

tannin acyl hydrolase
tannase
tannic acid
gallic acid
Aspergillus ochraceus

How to Cite

1.
Gonçalves HB, Riul AJ, Quiapim AC, Jorge JA, Guimarães LHS. Characterization of a thermostable extracellular tannase produced under submerged fermentation by Aspergillus ochraceus. Electron. J. Biotechnol. [Internet]. 2012 Aug. 24 [cited 2024 Sep. 19];15(5). Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v15n5-5

Abstract

Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications.

Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2% recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40ºC and 5.0, respectively. The enzyme was fully stable from 40ºC to 60ºC during 1 hr. The activity was enhanced by Mn2+ (33-39%) and NH4+ (15%). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product.

Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.