Peroxidase production from hairy root cultures of red beet (Beta vulgaris)
Full Text
Reprint PDF

Keywords

Agrobacterium rhizogenes
auxins
elicitation
T-DNA
thermostability
transformation

How to Cite

1.
Rudrappa T, Neelwarne B, Kumar V, Lakshmanan V, Reddampalli Venkataramareddy S, Gokare Aswathanarayana R. Peroxidase production from hairy root cultures of red beet (Beta vulgaris). Electron. J. Biotechnol. [Internet]. 2005 Aug. 15 [cited 2024 Sep. 19];8(2):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v8n2-12

Abstract

The genetically transformed roots of red beet have been shown, for the first time, to produce very high levels of peroxidase (POD; EC 1.11.1.7) accounting for 1.21 x 106 Units L-1. Of the ten clones established using different strains of Agrobacterium rhizogenes, one was that from the strain LMG-150, three each from A 2/83, A 20/83 and A4. All the clones showed true integration of T-DNA when tested by PCR and Southern hybridization methods. Each clone differed significantly from the others in growth, hormone dependency and POD production where LMG-150 produced highest biomass (140 g FW L-1) as well as POD (ranging from 8000-9000 U g-1 FW and 1.18 x 106 U L-1 with a specific activity of 600 U mg-1 protein) on hormone-free medium, both in shake-flask as well as in bioreactor with a further enhancement to 1.21 x 106 U L-1 upon the addition of extra calcium chloride (5 mM). PAGE with active staining showed 4 distinct bands of Rm 0.06, 0.16, 0.25, 0.38 and 0.46 in the biomass and bands at Rm 0.06, 0.16, 0.25 and one extra band of Rm 0.575 in the spent medium where isozymes of Rm 0.38 and 0.46 were totally absent. The pH optima and other properties were grossly comparable with the standard horse-radish POD (HRP) with better thermal stability than HRP and therefore, the present source appears to offer a cheaper and additional alternative for the commercial production of POD.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.