Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system
PDF

Keywords

Activity assay
Aldehyde dehydrogenase
Baculovirus expression vector system
Drug targets
Escherichia coli
Metal ions
Parasitic proteins
Recombinant protein expression
Recombinant
Schistosome Tegumental Protein
Schistosoma mansoni

How to Cite

1.
Harnischfeger J, Beutler M, Salzig D, Rahlfs S, Becker K, Grevelding CG, Czermak P. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. Electron. J. Biotechnol. [Internet]. 2021 Nov. 15 [cited 2024 Sep. 19];54. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2021.08.002

Abstract

Background: The heterologous expression of parasitic proteins is challenging because the sequence composition often differs significantly from host preferences. However, the production of such proteins is important because they are potential drug targets and can be screened for interactions with new lead compounds. Here we compared two expression systems for the production of an active recombinant aldehyde dehydrogenase (SmALDH_312) from Schistosoma mansoni, which causes the neglected tropical disease schistosomiasis.

Results: We produced SmALDH_312 successfully in the bacterium Escherichia coli and in the baculovirus expression vector system (BEVS). Both versions of the recombinant protein were found to be active in vitro, but the BEVS-derived enzyme showed 3.7-fold higher specific activity and was selected for further characterization. We investigated the influence of Mg2+, Ca2+ and Mn2+, and found out that the specific activity of the enzyme increased 1.5-fold in the presence of 0.5 mM Mg2+. Finally, we characterized the kinetic properties of the enzyme using a design-of-experiment approach, revealing optimal activity at pH 7.6 and 41°C.

Conclusions: Although, E. coli has many advantages, such as rapid expression, high yields and low costs, this system was outperformed by BEVS for the production of a schistosome ALDH. BEVS therefore provides an opportunity for the expression and subsequent evaluation of schistosome enzymes as drug targets.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.