GbpA as a secretion and affinity purification tag for an antimicrobial peptide produced in Vibrio natriegens
PDF

Keywords

Affinity purification tag
Affinity tag
AMP
Antimicrobial peptide
GbpA
IMPI
Protein secretion
Recombinant
Secretion
Secretion purification tag
Vibrio natriegens

How to Cite

1.
Schwarz S, Gerlach D, Fan R, Czermak P. GbpA as a secretion and affinity purification tag for an antimicrobial peptide produced in Vibrio natriegens. Electron. J. Biotechnol. [Internet]. 2022 Mar. 22 [cited 2024 Sep. 19];56. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/2022.01.003

Abstract

Background: Vibrio natriegens is a Gram-negative bacterium that offers a greater metabolic capacity than Escherichia coli for the production of recombinant proteins. This potential includes a low minimum doubling time of 7 min and a high maximum glucose uptake rate of 3.9 g*g−1*h−1. We therefore tested the ability of V. natriegens to produce the insect metalloprotease inhibitor (IMPI), an antimicrobial peptide, fused to the glucosamine-binding protein A (GbpA) secretion/purification tag, using the Vmax Express system.

Results: The IMPI-GbpA fusion protein was secreted into the medium and could be purified directly from the fermentation supernatant by affinity chromatography, including on-column digestion with thrombin. We also modified the GbpA tag by deleting the second and third domains, which reduced the size of the tag while maintaining its functionality. This modification also increased the IMPI yield.

Conclusions: The use of V. natriegens as an expression platform and GbpA for protein secretion and purification facilitates the inexpensive production of antimicrobial peptides. Our process achieved a higher volumetric yield than earlier attempts to produce recombinant IMPI in E. coli. However, the accumulation of IMPI causes V. natriegens growth arrest before the carbon source is depleted, suggesting it may be possible to achieve even greater productivity by further process optimization.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.