Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans
Full Text
Reprint PDF

Keywords

Acidithiobacillus thiooxidans
biofilm
biofiltration
hydrogen sulfide
Thiobacillus thioparus

How to Cite

1.
Aroca GE, Urrutia H, Núñez D, Oyarzún P, Arancibia A, Guerrero K. Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron. J. Biotechnol. [Internet]. 2007 Oct. 15 [cited 2024 Sep. 19];10(4):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v10n4-6

Abstract

Emissions of hydrogen sulfide (H2S) by industrial activities is frequent cause of corrosion and unpleasant odours. Treatment of gaseous emissions contaminated with H2S by biotrickling filters inoculated with single cultures of sulfur oxidizer bacteria exhibit several advantages over physicochemical methods, such as shorter adaptation times and higher removal ability. Biofilms of Thiobacillus thioparus and Acidithiobacillus thiooxidans have proved to exhibit high removal capacities, yet no comparative studies between them have been reported. This article reports the efficiency of biotrickling filters inoculated with T. thioparus and A. thiooxidans under similar conditions excepting the pH, that was the optimal for the bacterial growth, for the removal of H2S. The support was selected by determining the respirometric coefficients of the biomass. The maximum removal capacity of the biofilter inoculated with T. thioparus, operating within the range of pH (5.5-7.0) was 14 gS m-3 h-1, lower the value obtained for the biotrickling filter inoculated with A. thiooxidans; 370 gS m-3 h-1. Therefore, it is concluded that acid biotrickling filter inoculated with A. thiooxidans constitute the best strategy to remove H2S, with the advantage that the system not require an exhaustive pH control of the liquid media.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.