Visualisation of the microbial colonisation of a slow sand filter using an Environmental Scanning Electron Microscope
Full Text
Reprint PDF

Keywords

biofilm
microbial biodiversity
schmutzdecke

How to Cite

1.
Devadhanam Joubert E, Pillay B. Visualisation of the microbial colonisation of a slow sand filter using an Environmental Scanning Electron Microscope. Electron. J. Biotechnol. [Internet]. 2008 Apr. 15 [cited 2024 Sep. 19];11(2):0-. Available from: https://preprints.pucv.cl/index.php/ejbiotechnology/article/view/v11n2-12

Abstract

The removal of contaminants in slow sand filters occurs mainly in the colmation layer or schmutzdecke - a biologically active layer consisting of algae, bacteria, diatoms and zooplankton. A ripening period of 6 - 8 weeks is required for this layer to form, during which time filter performance is sub-optimal. In the current study, an environmental scanning electron microscope was used to visualise the ripening process of a pilot-scale slow sand filter over a period of eight weeks. To achieve this, sand particles were removed at weekly intervals and observed for biofilm development. Biological mechanisms of removal in slow sand filtration are not fully understood. A visualisation of the colonisation process would enhance the knowledge and understanding of these mechanisms. Colonisation of sand particles and increase in biomass was clearly seen during the ripening period. The mature, ripened filter exhibited a dense extracellular matrix consisting of a wide variety of microorganisms and their extracellular and breakdown products. This research demonstrated the successful use of an environmental scanning electron microscope to visualise the complex, heterogeneous nature of the schmutzdecke in a slow sand filter. Such knowledge could possibly lead to an increase in the application of slow sand filtration, especially for rural communities.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.